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The infinite-volume limit of thermodynamic functions calculated in the quantum microcanonical 
ensemble is shown to exist for a fairly wide class of spin systeIllS and quantum gases. The entropy 
is set equal to the logarithm of the number of eigenstates in an energy interval which increases 
linearly with the size of the system, but is otherwise arbitrary. The limiting entropy per unit volume 
agrees with that calculated in the canonical formalism, and possesses certain convexity properties 
required for thermodynamic stability. A precise criterion, in terIllS of the energy spectra of large 
systeIllS, is given for determining the limit of the thermodynamic entropy as the temperature ap­
proaches zero. This is not determined by the degeneracy of the ground state, contrary to the discus­
sion of the "third law of thermodynamics" found in some textbooks. 

I. INTRODUCTION 

A NATURAL question is: "What distribution 
of energy levels for a large system gives rise 

to a phase transition as the temperature is varied?"l 
One answer is obtained by calculating the partition 
function 

Z = :E exp (-EJT) (1) 
; 

where E; is the energy of the ith level and T(> 0) 
the absolute temperature in units such that Boltz­
mann's constant is unity. Phase transitions appear 
as discontinuities2 in the first-, second-, or higher­
order derivatives with respect to temperature of 
the free energy 

F = -TlogZ. (2) 

• Supported in part by the National Science Foundation. 
1 First brought to the author's attention by Professor 

Robert Rhodes. 
I We shall refer to a discontinuity in the first derivative 

of the free energy with respect to temperature as a "first­
order phase transition"; if the first derlvative is continuous 
but the second is discontinuous or approaches infinity, we 
call it a "second-order phase transition", etc. 

However, F is an analytic3 function of T over the 
range of temperature for which the sum (1) con­
verges, and thus discontinuities in the derivatives 
only appear if one considers the limiting function 

f(T) = lim F v(T)/V (3) 
V_a> 

obtained by dividing F by some extensive parameter, 
for example the volume V of the system, and taking 
the limit of an infinite system in a suitable way. 
Proofs4

-
7 that the limit (3) exists for quantum 

systems of any complexity8 have only appeared 

a Because the series (1) is uniformly convergent in the 
interior of region where it converges. See E. C. Titchmarsh, 
The Theory of Functions (Oxford University Press, New 
York, 1939)1.2nd ed., p. 95. 

'D. Ruelle, Relv. Phys. Acta 36,789 (1963). 
1M. E. Fisher, Arch. RatI. Mech. Anal. 17, 377 (1964). 
I R. B. Griffiths, J. Math. Phys. S, 1215 (1964). 
7 Classical SysteIllS have been considered by C. N. Yang 

and T. D. Lee, Phys. Rev. 87, 404 (1952); D. Ruelle, Relv. 
Phys. Acta 36, 183 (1963). 

8 If a system consists of a large number of noninteracting 
SUbSysteIllS, or an aggregate of noninteracting particlesl the 
proofs become much simpler. This is the case considere<l, for 
example, by A. Y. Khinchin, Mathematical Foundations of 
Quantum Statistics (Graylock Press, Alba.ny, New York, 
1960). See also J. van der Linden.and;P. Mazur, Physica. 27, 
609 (1961). 
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very recently. The relation between f(T) and the 
limiting distribution of energy levels for a large 
system is not particularly transparent since the 
limiting procedure (3) is preceded by a Laplace 
transform (1). 

The quantum microcanonical ensemble provides 
a more direct approach in answering the question 
posed above. It is presented in many textbooksll 

somewhat as follows: Let nE be the number of 
levels in the energy interval [E, E + DoE]. Define 
the entropy S as 

S(E) = log nE • (4) 

Once SeE) is known, other thermodynamic quan­
tities are obtained by differentiation; for example, 

T-1 = dS/dE. (5) 

Equation (4), though it provides a direct con­
nection between thermodynamic quantities and the 
energy spectrum, is logically unsatisfactory in at 
least two respects. First, S depends on the magnitude 
of DoE. This is a very weak dependence for a large 
system. Nevertheless, an uncomfortable ambiguity 
remains in the definition. Second, SeE) is a dis­
continuous function of E. since nE can change only 
by integral values. A "smoothing" operation of 
some sort must be applied to SeE) before taking 
derivatives, as in (5). The average density of levels 
for a system of macroscopic size is very large, but 
there is no reason to expect a priori that the distribu­
tion is smooth on the scale of the DoE we have 
arbitrarily chosen. 

Both of these conceptual difficulties disappear, 
as we shall demonstrate, when one takes the infinite­
volume ("thermodynamic") limit in a suitable fash­
ion. As a byproduct, the question posed at the 
beginning of this introduction receives a precise 
answer. 

One sometimes encounters the following objec­
tion to computing thermodynamic functions by the 
limiting procedure (3): "Why should experimental 
measurements, always performed on finite systems, 
be compared with results calculated for the limiting 
case of an infinite system?" The objection is best 
answered by considering a partiCUlar thermal ex­
periment. The heat capacity of a crystal is measured 
by heating it in a calorimeter. When the experiment 

.9 For example, K. Huang, Statistical Mechanics (John 
WIley & Sons, Inc., New York, 1963 . 188; L. D. Landau 
and E. M. Lifschitz, Statistical (Pergamon Press, 
Ltd., London, 1958), p. 22; C. lementary Statistical 
Physics (John Wiley & Sons, Inc., New York, 1958), p. 18; 
J .. E. Mayer and M. G. Mayer, Statistical Mechanics (John 
WIley & Sons, Inc., New York, 1940), p. 53. 

is complete, the investigator divides the heat ca­
pacity by the mass of the crystal and publishes 
the result as a specific heat in calories/gram OK or 
other suitable units. He does this because he is 
confident that, under the conditions of the experi­
ment and within the accuracy of the measurement, 
the heat capacity is proportional to the mass but 
otherwise independent of the size and shape of the 
crystal. In brief, the heat capacity is extensive. 
Naturally, this confidence can be (and sometimes 
is) checked through measurements on samples of 
various sizes and shapes. The theoretical quantity 
to compare with the experimental result is clearly 
that portion of the heat capacity strictly proportional 
to the size of a system for a large system. The con­
venient mathematical procedure for obtaining this 
is the limiting process (3). If the limit exists, one 
has a sensible quantity to compare with experiment. 

Various definitions of the microcanonical ensemble 
are introduced in Sec. II. Section III contains a 
proof that the limits exist for a spin system. The 
case of a quantum gas of bosons or fermions is 
treated in less detail in Sec. IV. That the various 
definitions in Sec. II lead to identical functions 
in the thermodynamic limit is shown in Sec. V, 
and that these agree with those calculated in the 
canonical formalism is shown in Sec. VI. As T 
approaches zero, the energy always approaches the 
ground-state energy, but the limiting entropy does 
not necessarily bear any relation to the degeneracy 
of the ground state, contrary to the statements 
found in many textbooks. These matters are dis­
cussed in Sec. VII. 

n. DEFINITIONS OF THE ENTROPY, 
AND A THEOREM 

Let H be a Hamiltonian with a discrete spectrum 
bounded from below, and let J.I.(E) be the number 
of eigenstates with energy not exceeding Elo. Define 
the entropy S by 

SeE) = log p(E) = log Tr [B(E - H)] (6a) 

where Tr stands for trace and B(x) is 1 for x 2: 0 
and 0 for x < O. For any 0 > 0 define 

S-(o; E) = log n-(o; E), (6b) 

where n-(o; E) is the number of levels in the interval 
[E - VO, EJ. Here V is the volume or some other 
parameter (such as the number of particles) which 
gives a measure of the size of the system. 

10 For all SysteIns we wish to consider, p(E) is finite for 
all finite values of E. See Refs. 4 and 5. 



                                                                                                                                    

MICRO CANONICAL ENSEMBLE 1449 

The inversell function to p. (E) , Hn), is defined 
as follows. Let the normalized eigenstates cP, of H, 
i = 1, 2, 3, ... , be numbered in the order of 
increasing energy (within a degenerate multiplet, 
the order may be chosen arbitrarily), and let Hn) 
be the energy of the state CPn. For x between n - 1 
and n, Hx) is equal to Hn). 

Define the normalized quantities 

in terms of which (6a) may be written as 

u(e) = V- 1 log p.(Ve) 

or the inversell function 

(7) 

(8a) 

(8b) 

The function u(e) is only defined for Ve greater 
than or equal to the ground-state energy, whereas 
e(u) is defined for - ex:> < u < Urn. For a quantum 
gas, Urn is + co, and for a spin system it is some 
constant less than infinity. For u :::; 0, Ve(u) is 
equal to the ground-state energy and hence is not 
very interesting. 

The function u - (0; e) is defined in analogous 
fashion to u(e). We shall show (in Sec. V) that u 
and u - are identical in the thermodynamic limit. 

The entropy in (6a) may also be written as 

SeE) = -Tr [p log p] 

where the density matrix p is given by 

(9a) 

Pi, = (CPi, pcp,) = [p.(E)rl (9b) 

for i :::; p.(E) , and all other matrix elements are 
zero. Let 

E = Tr [pH] (lOa) 

denote the average energy associated with this den­
sity matrix. The corresponding normalized quantity 
is 

N 

i(u) = V-iF; = (VN)-l L: Hn), (lOb) 

where N is the smallest integer not less than eVv
• 

An analogous density matrix corresponds to the 
definition (6b). We shall not in this paper make 
any use of the average energy (lOb). For u < u". 
it coincides with e(u) in the thermodynamic limit 
(see Appendix F) for the systems considered in 
Secs. III and IV. 

11 We define the "inverse" of a discontinuous, monotone 
function as follows. Draw the graph of the function and 
connect the points of discontinuity with vertical lines. This 
is the graph of the inverse function if ordinate and abscissa 
are interchanged. The inverse of a function continuous to 
the right is continuous to the left, and vice versa. 

The proofs in Sec. III utilize the following theorem: 
Let H be a self-adjoint operator in a finite-dimen­
sional vector space'll. If 

(cp, Hcp) :::; E (11) 

for every normalized cP in an m-dimensional linear 
subspace ;m; of'll, then 

p.(E) 2:: m (12) 

or the equivalent: 

~(m) :::; E. (13) 

Since this is merely one form of the "minimax 
principle",12 we shall not give the proof here. Sec­
tion IV requires an extended form of the theorem 
in which H is a self-adjoint operator with a discrete 
spectrum bounded from below, and'll is an infinite­
dimensional Hilbert space. The theorem is still valid 
provided the (finite-dimensional) subspace ;m; lies 
within the domain where H is defined.13 

m. THE LIMITING ENERGY FOR A SPIN SYSTEM 

The Heisenberg model of ferromagnetism with 
Hamiltonian 

H = -2J L: 8,,8;, (14) 
( in 

where S, is the spin operator for the ith atom and 
the sum extends over all nearest-neighbor pairs of 
atoms in a regular lattice, provides a typical example 
of a "spin system,,14: note that only the spin degree 
of freedom is considered. 

We shall require that an acceptable Hamiltonian 
H for a spin system 

(a) have the translational symmetry of the lattice 
(b) consist of a sum of terms, each a Hermitian 

operator (all matrix elements finite) involving a 
group of spins15 no two of which are separated by a 
distance greater than r (where r does not depend 
on the term considered) 

(c) contain only a finite number of terms involving 
a given spin. 

The norm IA I of a Hermitian operator A shall 
be the maximum of the absolute values of its eigen­
values. It has the property 

IA +BI:::; IAI + IBI· (15) 

12 P. R. Halmos, Finite-Dimensional Vector Spaces (D. 
Van Nostrand, Inc., Princeton, New Jersey, 1958), 2nd ed., 
p. 181. 

13 N. Dunford and J. T. Schwartz, Linear Operators 
(John Wiley & Sons, Inc., New York, 1963), Vol. II, p. 1543. 

14 See Ref. 6 for a more precise definition. 
1& Since only the spin degree of freedom is considered, we 

employ interchangeably the terms "atom" and "spin." 
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Let h. for i = 1,2, ... , n [n is finite by (c)] be all 
the tenns in H which involve a particular, say the 
pth, spin. By (I5) we have 

IL h.1 ~ C = L Ihil. (16) 
• • 

It is clear from (16) that if H' involves at most M 
spins and is the sum of certain terms in H, then 

IH'I ~ CM. (17) 

In particular (setting H' = H), all the eigenvalues 
of H for a lattice containing V spins lie in the interval 
[-CV, CV}. 

A. The Basic Inequality 

Consider two spin systems 1 and 2 (for example, 
two halves of a cube) which together constitute a 
system with Hamiltonian 

(18) 

where Hl is the sum of all terms in H involving 
only the spins in system 1, H2 is similarly defined 
for system 2, and H' is the sum of all tenns which 
simultaneously involve spins in both 1 and 2. Let 
"'II "'2' ... , "'n be the eigenfunctions of HI associated 
with the n lowest eigenvalues, and let Xl, X2, '" , X .. 

be a similar set for H 2 • The product functions "'iXi 

span a subspace ~ of dimension nm. If ~l and ~2 
(defined in Sec. II) refer to HI and H 2, respectively, 
the inequality 

(ep, Hep) ~ ~l(n) + Mm) + (ep, H'ep) (19) 

holds for any normalized e; in ~. Now (ep, H'e;) 
cannot exceed IH'I, and thus by the theorem of 
Sec. II (~ refers to H), 

~(nm) :$ ~l(n) + Mm) + IH'I. (20) 

This inequality holds for n, m integers and therefore 
also (see the definition of ~ in Sec. II) when n (or m) 

may be reduced to this case by elementary manipula­
tion.6 The cube Ok for k = 2, 3, 4, .. , of volume 
Vk contains V", = 23k spins. It is made up of eight 
cubes of the type Ok-!' Let us apply (21) to O. 
with l = 8, four of the no's equal to exp (V"'_lUI), 
and four equal to exp (V"'-IU2)' In terms of nor­
malized quantities (8b), (21) becomes 

Ek(jU1 + jU2) ~ !Ek-I(UI) + jEk-!(U2) + V;l IH'I. 
(22) 

Since each term in H' involves spins in at least 
two of the smaller cubes, it can, by condition (b) 
above, involve only the spins within a distance r 
of the surface of one of the smaller cubes. There 
are at most 12r· 22k such spins and therefore, by (17), 

V;l IH' I ~ C'2-'" , (23) 

where C' = 12r C is a constant independent of k. 
If we set 0'1 = 0'2 = 0' and insert (23) in (22), 

it is evident that 

(24) 

is monotone decreasing as k -t ex:>, and must, since 
bounded below by -C [see the remark following 
(17)], approach a limit E(U). The inequality (22) 
in the limit k -t ex:> together with the fact that E(U) 
is bounded from above by (24) implies that E(U) 
is convex-downwards and continuous, except, per­
haps, at the upper limit 0' OJ of the interval where E 

is defined.I6 Thus T = dE! dO' is defined except at 
most on a denumerable set of points, and is a 
monotone increasing function of 0'. Further, E(U) is 
monotone increasing, since each EA> has this property. 
Figure 1 shows its general appearance. 

is any real number greater than zero and less than E 

or equal to the total number of levels for system 1 
FIG. 1. The function e(1T) in 8 

typical case. For negative IT, ~ is 
equal to itB value at IT - O. 

(or 2). 
The generalization of (20) to a system consisting 

of l subsystems is 

~(ft n.) :$ t Mni) + IH'I, (21) 

where H' includes all tenns in the Hamiltonian 
involving spins in two or more subsystems. This 
inequality is the basis of the arguments below. 

B. Limiting Energy for a Special Sequence 

Consider a simple cubic lattice with lattice con­
stant = 1. More general three-dimensional lattices 

The convergence of Ek(U) to "(0') is uniform on 
an interval 0 :$ 0' :$ 0'1 < um• For suppose there 
were a 0 > 0 and an increasing sequence11 {K} 
such that 

16 Convex functions are discussed by G. H. Hardy, J. E. 
Littlewood, and G. P61ya, Inequalities (Cambridge Universitr, 
Press, New York, 1959), 2nd ed., Chap. III. By "convex' 
we mean continuous convex functions. 

17 "Increasing sequence" is an abbreviation for "8 sequence 
of integers, not necessarily consecutive, increasing to infinity." 
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(25) 

for 0'" in the interval converging to some 0". The 
inequality (25) together with the monotonicity in 
0' of E" and the continuity of E would then imply 
that for any 0''' > 0", EK(U") would converge to a 
number [E(U")] not less than E(U') + 8. This cannot 
occur, since E(U) is continuous. The possibility 
EK(UK) ~ E(UK) - 8 need not be considered since 
(24) is monotone decreasing in k. 

C. A General Sequence 

Next we shall show that an arbitrary sequence 
of cubes of increasing volume yields the same limit 
E(U) as the particular sequence Q". If this were not 
true, we could find a sequence of cubes WL with 
volume V L increasing to infinity and chosen so that 
either 

(26) 

or 

(27) 

for some 8 > o. 
Consider the case (26). Provided 23

" < V L, we 
may imagine WL to be made up of m" cubes of type 
Q" (close packed, starting in one corner of WL). plus 
a system wt of volume Vt = V L - m" V". The 
basic inequality (21), with appropriate ni and written 
in terms of normalized quantities, becomes 

EL(U) ~ E"(U) + VrV;;I[Er(U) - E,,(U)] + V:;:1 IH'I. 
(28) 

The second term on the right is bounded by 2C Vr V;; 1 

and the third by C'2-". Provided V L is sufficiently 
large we may, by a judicious choice of k, en­
sure that neither term exceeds 8/4, and also that 
IE,,(U) - E(u)1 ~ 8/4. Then (28) contradicts (26). 

By considering a cube Q" with V" » V L as made 
up of mL cubes of type WL plus a system Qt, we 
may prove, using the arguments above, that (27) 
also leads to a contradiction. 

This completes the proof that the normalized 
energies for a sequence of cubes of increasing volume 
and for a Hamiltonian satisfying properties (a) to 
(c) converge to a well-defined limit. The result 
may be extended in various ways. 

(i) Other shapes of domain. There is no difficulty 
in extending the result to (rectangular) parallel­
epipeds in which all three linear dimensions in­
crease to infinity. Presumably Fisher'ss techniques 
could be employed for more general domains. 

(ii) Periodic boundary conditions. It is easily 
shown18 that E,,(U) is altered at most by a term 
proportional to surface divided by volume if periodic 
boundary conditions are applied on a parallelepiped. 
This correction is negligible if the linear dimensions 
are large. 

(iii) Interaction terms of unbounded range. The 
arguments previously employed in the canonical 
case6 for a particular class of these interactions 
may be modified in an obvious fashion in the micro­
canonical case. 

IV. THE LIMITING ENERGY FOR 
A QUANTUM GAS 

We consider a gas of identical particles, either 
bosons or fermions, with a Hamiltonian of the form 

H = - (tN2m) :E Ai + :E veri - r;), (29) 
.; i<1 

where Ai is the Laplacian for the ith particle. The 
potential v may depend on internal coordinates (e.g., 
spin) of the interacting atoms, in which case these 
coordinates must also be included in the wavefunc­
tions and summed over when taking inner products, 
etc. 

There are some complications in the case of gases 
which are not encountered in spin systems: (a) 
The Hamiltonian is unbounded, and it requires 
some care to obtain a self-adjoint operator in the 
Hilbert space of square-integrable functions. Ruelle4 

has discussed the case of particles confined in a 
(cubic) box with "hard" walls. That is, the wave­
function vanishes at the walls. We restrict our con­
siderations to this case. (b) The energy depends on 
the density of particles p as well as the entropy. 
(c) Some restriction must be placed upon the po­
tential v, even if it is of finite range, to ensure 
stability, by which we mean that H has a lower 
bound proportional to the size of the system. It is 
sufficient to require that the total potential energy 
W for N particles satisfy 

W(r1 , r2, '" ,rN) 2:: -CN (30) 

for all allowed values of the coordinates, where C 
is a constant independent of N. Conditions on v 
sufficient to insure stability have been published.4

•
5 

.19 

In addition, restrictions must be placed on the 
long-range behavior of vCr). For brevity of exposition, 
we shall use the condition employed by Ruelle4

•
19

: 

there is a constant R. such that 

v(r) ~ 0 for Irl 2:: R.. (31) 

18 See the analogous arguments in Ref. 6. 
It D. Ruelle, Ref. 7. 
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, , , , , , 
....-R-i 2 , , , , , , , , 

FIG. 2. Closed box divided 
into two subsystems. 

A. The Basic Inequality 

Consider a closed box (Fig. 2) divided into two 
boxes 1 and 2 by a partition of thickness R ~ RD. 
The Hamiltonian HI of box 1 containing N par­
ticles with coordinates r l , t 2, .•. , tN is defined 
using (29) plus the requirement that the wavefunc­
tion have the correct symmetry and that it vanish 
if any particle is located outside or on the boundary 
of the box. (We assume the box is of "reasonable" 
shape, so that a suitable self-adjoint operator may 
be defined.) Let 1/;1, 1/;2, ... be the normalized eigen­
functions of HI in order of increasing energy. Sim­
ilarly define H2 for M particles in box 2 with eigen­
states Xl, X2, .•• functions of the particle coordinates 
rN+l, tN+2, ••• , tN+M' 

Consider a normalized function cp in the mn­
dimensional subspace mI spanned by the product 
functions 

(32) 

for j = 1, 2, ... nand k = 1, 2, ... m. The Hamil­
tonian H (as a differential operator) for the entire 
box with partition removed is equal to 

H = HI + H2 + H', 

H' == 1: 1: Veri - r;), 
i5.N i'?:.N+l 

whence we obtain the result 

(33) 

The function cp is nonzero only when the first 
N coordinates lie in box 1 and the last M in box 2. 
Under these conditions H' is negative, and thus 
we conclude that 

where ~l' ~2 refer to HI and H2, respectively. 
Two problems remain before we may apply the 

theorem of Sec. II. In the first place, cp is not sym­
metric (antisymmetric) in all the particle coordi­
nates. The normalized functions CP;k of proper sym­
metry constructed by permuting the coordinates in 
1/;;Xk, summing the permutations with appropriate 
sign, and multiplying the result by a suitable factor2o 
span an mn-dimensional subspace mI'. It is easily 
verified that for any 'P' a linear combination of 
the 'P;k' 

20 See, for example, Sec. 11 of Ref. 5. 

(cp', Hcp') = (cp, Hcp), (36) 

where cp is the corresponding linear combination 
of the CPjk. 

A second problem is that cpo will not, in general, 
lie within the domain of definition of the self­
adjoint operator H due to discontinuities in the 
first derivatives at the boundaries of the partition. 
To get around this difficulty, one may (we shall 
not give the details here) approximate the CP;k with 
twice continuously differentiable functions in imita­
tion of Ruelle's discussion on p. 791 of Ref. 4. 

Let ~ refer to H; we conclude from (36) and 
(35) that 

~(N + M; nm) ~ ~I(N; n) + ~2(M; m). (37) 

Here the number of particles appears as an additional 
parameter. The reader may verify that (37) also 
holds if ~l is defined for nonintegral N by linear 
interpolation between consecutive integers, and the 
same procedure is used for b and ~.2l The obvious 
extension of (37) to a box broken up into l regions 
(of reasonable shape), each separated by at least 
a distance Ro from all other regions, is 

(38) 

B. Limiting Energy for a Special Sequence 

Consider a sequence of cubes Ok with volume 
Vk = 23kvo (vo ~ R~) for k = 1, 2, .... The wave­
functions are required to vanish if any particle 
lies outside the cube or on the inside within a 
distance !Ro of any boundary.22 The cube Ok con­
sists of eight cubes of type Ok-I' Let us suppose 
that each of the first four contains PI Vk - l particles 
and each of the second four, P2 Vk - I particles. For 
i = 1-4 let n; = exp (Vk-IO"I) and for i = 5-8, 
exp (Vk - I 0"2)' The inequality (38) applied to this 
case and expressed in terms of normalized quantities 
(E = V-I~) becomes 

(39) 

where E depends on both the entropy (per unit 
volume) 0" and the density p. 

For PI = P2 = P and 0"1 = 0"2 = 0", (39) and (30) 
imply that tk(P, 0") is monotone decreasing in k 
and bounded below by - C p.23 Thus 

(40) 

21 Compare Sec. 5 of Ref. 5. 
22 That is, the particles all lie within a "free volume" less 

than the volume of the cube. 
23 The first term in (29), the kinetic energy, is always 

nonnegative. 
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exists for U in (- (Xl, (Xl) and P in the interval 
(0, Pm) where Pm is the maximum density (finite 
or infinite). Furthermore, (39) in the limit k -+ (Xl 

together with the fact that E is bounded from above 
by any Ek implies that E(p, u) is a continuous convex 
downwards function of both arguments together. 
That is, for 0 < X < 1, 

E[XPI + (1 - X)P2' XUI + (1 - X)U2] 

(41) 

for any Ul, U2 and any PI, P2 in (0, Pm). The conver­
gence of Ek to E is uniform on any closed rectangle 
in the (p, u) plane which lies within the domain of 
definition. Appendix A contains the proof. 

C. Extension to Other Sequences, etc. 

The above arguments may be generalized in at 
least two ways: to more general sequences of domains 
and to more general types of potential. A considerable 
generalization has already been carried out by Fisher5 

for the canonical and grand canonical formalisms. 
Fortunately, analogous arguments apply in the micro­
canonical case: Fisher's proofs require but minor 
modifications; for the most part only a change in 
notation. Details of this analogy are given in Ap­
pendix B. The conclusion is that for all cases of 
quantum mechanical systems for which Fisher has 
shown the existence of the canonical thermodynamic 
limit, the microcanonical limit also exists. [The 
equivalence of the thermodynamic functions derived 
in the two schemes is the subject of Sec. VI below.] 
Therefore we shall omit the details and only point 
out the generalizations possible. 

(i) Any sequence of cubes with volume increasing 
to infinity yields the same result as (40), provided 
the density of particles remains constant. Much 
more general shapes of domain are possible, though 
in all the cases considered by Fisher essentially 
the same "hard walls" boundary conditions apply: 
the wavefunction vanishes when any particle lies 
outside the domain. In particular, periodic boundary 
conditions are not considered. 

(ii) The condition (31) may be replaced by one 
of the "weak tempering" conditions discussed by 
Fisher. Many particle potentials are also permis­
sible (with certain restrictions, of course). It ap­
pears difficult, perhaps impossible, to weaken the 
stability condition (30). 

In the above derivations we considered, as a 
matter of convenience, the energy and entropy per 
unit volume; no particular difficulty arises if one 
or both of these quantities is normalized on a per-

particle basis. Thus let u, s, and v = P -I be the 
energy, entropy, and volume per particle, respec­
tively. From the relation 

Uk(V, s) = VEk(V-1, V-IS), (42) 

it is clear that the convergence of Ek to E at fixed 
(p, u) is equivalent to the convergence of Uk to a 
limit U at fixed (v, s). The convexity of E implies 
that the corresponding limiting function U is convex 
downwards in v and s together. 

V. ENTROPY AS A FUNCTION OF ENERGY 

In Sec. III [IV] we showed that the Ek(U)[Ek(P, 00)1 
converge to a well-defined E(U)[E(p, u)1 given certain 
conditions on the interaction terms in the Hamil­
tonian and on the sequence of domains Uk of in­
creasing volume. This implies that the inversell 

functions Uk(E)[Uk(P, E)] converge to U(E)[U(p, E)], the 
inverse function to E(U) [E(p, 00)], for any E greater 
than 

Eq = E(U = 0), (43) 

the (normalized) ground-state energy24. For sup­
pose there is some El ~ Eo[U(E) is not defined for 
E < Eo] and a number ~ > 0 such that 

(44) 

for an increasing sequence17 {K). Now Ek(U) is 
monotone increasing, and thus (44) implies that 

EK(UI - ~) ~ EI, (45) 

where UI denotes u( EI); or, in the limit K -+ (Xl 

E(UI - ~) ~ El = E(UI)' (46) 

Since E(U) is also montone increasing, (46) means 
that it must equal EI for all U between UI - 0 and 
001' However, E(U) is also convex downwards, so 
that such a horizontal portion of its graph must 
extend to 00 = O. Or, in other words, EI = Eo. An 
analogous argument yields the same conclusion if 
in place of (44) we consider 

(47) 

Thus the convergence of Uk( E) to U( E) for all E > Eo 

is assured. Similarly, in the case of gases, Uk(P, E) 
converges to u(p, E) for 

(48) 

Simple geometrical considerations show that since 
E(U) is monotone increasing and convex downwards 

24 The limiting function 0"( E) and, in qualitative terms, 
its connection with the energy spectrum, have been con­
sidered by H. B. G. Casimir, Z. Physik 171,246 (1962), in a 
discussion of the third law of thermodynamics. 
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(Fig. 1), IT(E) is monotone increasing and convex 
upwards. Similarly, IT(p, E) is a convex upwards 
function of both arguments together, and monotone 
increasing in the second. It should be noted in this 
last case that both IT and E are normalized per unit 
volume. Of course, the entropy per particle 8 is 
a convex upwards function of v and u, the volume 
and energy per particle, together (see Sec. IV). 

Define Eoo as the smallest energy such that 

IT(E) = IT(Eoo) (49) 

for all E > Eoo-that is, the energy associated with 
the left edge of the horizontal portion (if any) of 
the IT(E) curve. It is properly identified (see Sec. 
VI) as the energy in the limit T ~ co. For a spin 
system, Eoo is finite since all the energy eigenvalues 
(Sec. III) fall within an interval which increases 
linearly with the size of the system. For a quantum 
gas, on the other hand, E is defined for values of IT 
extending to + co, and thus Eoo is infinite. 

Weare now in a position to prove the assertions 
in Sec. II regarding the entropy S-. For a system 
nlo of volume V. define2s 

1T~(8; E) = V;lS;1(8; VE). (50) 

We shall show that for a fixed 8 > 0 and provided 
Eo < E ::; Eoo 

lim 1T~(8; E) = IT(E) , (51) 
k~oo 

where the right-hand side is the limit of ITlo(E) as 
k ~ co. In the proof we assume 0 is less than E - Eo; 
the modifications required for larger 0 are obvious. 

From the definition of S- we obtain the inequalities 

ITlo(E) ~ 1T"i( 8; E) ~ ITlo(E) 

+ V;l log {l - exp Vlo[lTk(E - 8) - ITk(E)]}. (52) 

The quantity 
a = IT(E) - IT(E - 8) (53) 

is greater than zero since E ::; Eoo and IT(E) is convex 
upwards. Choose k large enough so that 

IlTlo(E) - IT(E) I ::; ta , 

and hence 
ITk(E - 8) - ITk(E) ::; -la, 

and therefore 

ITk(E) ~ 1T"i( 8; E) ~ ITk(E) 

+ V;llog [l- exp(-taVk)]' 

(54) 

(55) 

(56) 
16 Since the density is held constant in the following 

argument, it is not explicitly indicated. 

Since V. ~ co as k ~ co, it is apparent that IT.(E) 
and 1T"i(8; E) approach the same limit. 

VI. EQUIVALENCE OF THE CANONICAL AND 
MICROCANONICAL FORMALISMS 

Before stating the formal theorems which con­
stitute the principle results of this section, we shall 
discuss in general terms the relation between the 
canonical and microcanonical formalisms. Let E, IT, 
I be the normalized energy, entropy, and free energy 
(per unit volume). The well-known thermodynamic 
relationship 

I(T) = E(IT) - ITT, (57) 
IT = -dl/dTj T = dE/dlT 

is often called a Legendre transformation. 
In the canonical formalism4

-
6 one considers a 

sequence of normalized free energies (convex-up­
wards functions of T): 

(58) 

where F is defined by (1) and (2) using the energy 
spectrum of the system nk • Under certain conditions 
this sequence approaches a limiting function I(T). 
Under similar conditions the microcanonical form­
alism yields a sequence Ek(lT) converging to a limiting 
function E(U). If the limiting functions are related 
by the Legendre transformation (57), the thermo­
dynamic predictions of the two formalisms are 
identical. 

Equation (57) is not quite adequate for our pur­
poses. A simple extension discussed in Appendix C, 
which we shall also call a "Legendre transformation," 
eliminates the ambiguities in cases where E (or I) 
has a discontinuous first or vanishing second de­
rivative. The essential condition is that E(IT) be con­
vex downwards, or, equivalently, that I(T) be con­
vex upwards. 

Our equivalence proof employs the following de­
vice. As in Appendix C, but with a slight change 
in notation, define 

neT) = inf [Ei(lT) - ITT] (59) 
v 

the convex-upwards function "associated with" Ek(IT). 
The function 

Et(lT) = sup [ft(T) + ITT] (60) 
T 

which is convex-downwards and related to It by a 
Legendre transformation, is the "convex cover" of 
Ek, that is 

(61) 
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and for any u is greater than or equal to any other 
convex-downwards function satisfying (61) [See Ap­
pendix CJ. Theorem 2 of Appendix C shows that 
the convergence of the ft to a function jeT) implies 
the convergence of the Et to the function E*(U) 
associated with f(T) by a Legendre transformation. 
Thus to demonstrate the equivalence of canonical 
and microcanonical formalisms it suffices to show 
that (i) MT) and ft(T) approach the same limit 
as k -+ 00; (ii) EIc(U) and Et(U) approach the same 
limit as k -+ 00. 

We consider first the relation of fIe and ft by 
means of the following inequality: 

exp [- VkMT)/T] = Z = L: e-E'IT = L: e-E(n)IT 
; .. 

where N is any integer in the domain of definition 
of ~. [The final term is still a lower bound for Z 
when N is any real number in that domain.] Equa­
tion (59) may be rewritten as 

exp [- V,,/t(T)/T] = sup [Ne-HN)IT], (63) 
N 

which upon comparison with (62) yields the in­
equality 

ft(T) ~ MT). (64) 

When Vic is large there is always some N which 
makes the right side of (62) a "good approximation" 
for Z (in a suitable sense), and in consequence we 
have the following two theorems. 

Theorem 1. If as V k -+ 00, the fle(T) converge to a 
function f(T) on some interval 0 :::; Tl < T < 
T 2 :::; 00, then the ft (T) converge to f (T) on the 
same interval. 

Theorem 2. Assume that the Et(U) converge to a 
function E*(U) on the interval Ul < U < U2 :::; 00 
as V k -+ 00. Let Tl be the limit of dE*/du as u ap­
proaches Ul from above, and T2 the limit as u ap­
proaches U2 from below.28 Then on the interval 
Tl < T < T2 the sequences MT) and ft(T) both 
converge to the same limiting function f(T). 

The straightforward, but tedious, proofs of these 
theorems will be found in Appendix D. For the 
systems considered in Secs. III and IV, it has 
previously been shown'-8 that the fk(T) converge 
to f(T) on (0, (0), and thus by Theorem 1 the 

26 The existence of these limits is guaranteed by the fact 
that E*(<T) is convex downward and therefore its derivative 
is monotone increasing in <T. TI may, of course, be infinite. 
T 1 cannot be less than zero since E*( <T ) is monotone increasing. 

ft(T) also converge to f(T). The only remammg 
problem is to show that E" and Et approach a common 
limit as k -+ 00. The function E(U) for the systems 
considered in Secs. III, IV is always convex down­
wards and the limie7 of a sequence 

(65) 

which is monotone decreasing in k, with 8" approach­
ing 0 as k -+ 00. Thus, because Et + 8" is the "con­
vex cover" of E" + 8", 

E(U) :::; Et(U) + 8" :::; E,,(U) + ale (66) 

and we conclude that the Et converge to E(U). The 
proof of equivalence of canonical and micro canonical 
formalisms under the conditions given in Secs. III 
and IV is therefore complete. 

There are some systems for which the conditions 
of Sec. III are violated with the result that Ek and 
Et do not converge to the same function. An in­
structive, though highly artificial example, is found 
in Part 1 of Appendix E. For this case, ft(T) and 
fle(T) still converge to the same function in agreement 
with Theorem 1. In fact, Theorems 1 and 2 are 
quite general and are independent of the conditions 
used in Secs. III and IV. 

VII. PHASE TRANSITIONS, ZERO TEMPERATURE 
LIMITS, AND THE THIRD LAW OF 

THERMODYNAMICS 

The limiting curve26 E(U) is monotone increasing 
and convex downwards (as in Fig. 1). If a straight 
line of slope T is drawn tangent to (touches, but 
does not cross) the curve E(U), the values of E and 
U at the point of contact are the energy and entropy 
associated with the temperature T (See Appendix C). 
Should the tangent line and the curve E(U) have an 
entire segment (rather than one point) in common, 
the monotone increasing functions E(T), u(T) show 
jump discontinuities indicating a first order phase 
transition.2 If the tangent line touches the curve at 
a single point, but at this point d2 E/du2 vanishes, 
then the specific heat [dE/dT] becomes infinite at 
this temperature, as in certain types of second 
order phase transition. A similar analysis may be 
made for other types of phase transition. The ques­
tion posed in the introduction thus receives a precise 
answer in terms of Eq. (8b) in the limit as V -+ 00. 

27 This is clear for the special sequences of cubes con­
sidered in Sec. III, IV. In the latter, the "strong tempering" 
condition (31) allows one to set lik = O. Fisher's argument 
(Sec. 6 of Ref. 5) employs in place of lilc a tie which ap'proaches 
a finite limit t. The argument works just as well If tic is re­
placed by Ii" = tic - t. The case of a sequence of domains 
other than the speciahsequence of cubes is not essentially 
different, since one uses the Elc from the latter to set lower' 
bounds on the EK from the former. 



                                                                                                                                    

1456 ROBERT B. GRIFFITHS 

The zero temperature limit merits a careful dis­
cussion because a certain amount of confusion exists 
in the literature. For u < 0 we know that 

E(U) = Eo = E(U = 0). (67) 

The graphical procedure given above shows that 

lim (T -7 0+ )E(T) = Eo (68) 

Since by definition E(U = 0) is the limit as k -7 co 

of V;1 times the ground-state energy E.k of the 
system Qk, (68) shows that E(T) approaches the 
ground-state energy per unit volume as T approaches 
zero. This is not a trivial result for, as we shall see, 
the corresponding equality is not in general true 
for the entropy. 

Again using the geometrical construction, one 
finds that 

lim (T -7 0+ )u(T) = Uo = lim (E -7 Eo+ )U(E), (69) 

or, in other words, Uo is the largest value of U for 
which E(U) = Eo. We may write Uo in terms of the 
energy spectrum: 

Uo = lim (5-70+) lim V;llog~(E.k + V k 5), (70) 
k_", 

where use has been made of (69) and (8a) together 
with the remarks following (68). Note that the 
argument of the logarithm is the number of states 
lying within an energy interval V k 5 above the ground 
state. 

If the order of limits in (70) is interchanged, one 
obtains 

(J" = lim V;1 log dk , (71) 
k-'" 

where dk is the degeneracy of the ground state of Qk' 

The limit (71) mayor may not exist; if it does 
exist, (J" may be equal to or less than (J'o. 

The arguments of Sec. I provide some justification 
for associating (J'o [see (69)] with the "entropy at 
zero temperature" obtained by extrapolating to 
T = 0 measurements made on macroscopic systems 
at finite temperatures.28 The latter appears in dis­
cussions of the "Third Law of Thermodynamics", 
one form of which states that the entropy in the 
limit T -7 0 is independent of pressure, magnetic 
:field, etc.211 

• Our approach to the problem is similar to that of 
Casimir, Ref. 24. 

II A discussion together with applications to practical 
problems is found in J. Wilks, The Third Law 01 Thermo­
dynamics (Oxford University Press, New York, 1961). 

Many textbooks30
, on the other hand, discuss the 

third law on the basis of the degeneracy of the 
ground state, that is, in terms of u' rather than Uo. 
Such discussions may be based on a naive applica­
tion of the canonical formalism to finite systems, 
and perhaps in some cases31 reflect the erroneous as­
sumption that at very low temperatures only the 
energy levels lying within an interval of order kT 
above the ground state make a significant contribu­
tion to the partition sum (1).32 The reader may 
find instructive the examples given in Appendix E, 
Part 2, of spin systems satisfying the postulates of 
Sec. III, but for which (J" = 0 and (J'o > O. These 
examples are artificial, but we feel that they none­
theless illustrate a significant point: There is no 
reason to assume, on the basis of statistical mechanics 
alone, that the properties of a macroscopic system 
at low temperatures bear any resemblance to those 
calculated for the ground state. The energy forms 
an exception [see (67), (68)]. But for other quantities, 
including the entropy, one must know something 
about other low-lying levels in addition to the ground 
state. For many systems it is probably the case 
that the vast majority of low-lying levels "resemble" 
the ground state in certain respects, but this does 
not seem to be true in general. 

VIII. CONCLUSION 

The main result of this paper has been to establish 
rigorously the connection between thermodynamic 
quantities and the distribution of energy levels in 
the limit of an infinite system. The thermodynamic 
results depend only on the coarse distribution of 
levels. Roughly speaking, the number of levels in 
an energy interval which increases in direct propor­
tion to the volume serves to determine the entropy. 
It would be of interest to know whether under 
certain conditions a smaller interval could be chosen; 
for example one of constant magnitude or increasing 
as (say) VI, and the same results obtained. 

30 For example, Ref. 29, p. 87; K. Huang, Ref. 9,jl. 191; 
L. D. Landau and E. M. Lifschitz, Ref. 9, p. 66; T. L. Hill, 
Statistical Mechanics (McGraw-Hill Book Company, Inc., 
New York, 1956), p. 76; A. H. Wilson, Thermodynamics and 
Statistical Mechanics (Cambridge University Press, New 
York, 1960), p. 190. 

31 An argument of this type has been presented and 
criticized by M. J. Klein, Scuolo Internazionale di Fisica 
"Enrico Fermi" Corso X (Varenna, Italy, 1959), p. 17. 
Our criticism (footnote 32) is of a slightly different character. 

32 For most systems of the type discussed in Sees. III, IV 
(exceptions may occur if d./dtT is discontinuous at tTo) the 
exact opposite 18 the case; given a temperature T, the parti­
tion sum for a system of sufficient size is not appreciably 
altered if contributions from the ground state and all levels 
within an energy interval kT above the ground state are 
omitted. [The rapid increase with energy of the density of 
levels more than compensates for the decrease of the ex­
ponential weighting factor.] 
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The principle utility of our rigorous formulation 
is probably found in answering questions of principle 
rather than in applications to exact or approxi­
mate calculations on model systems, for which the 
the canonical and grand canonical approaches seem 
better suited. In many cases we can be certain, 
from the arguments of Sec. VI, that the thermo­
dynamic results from canonical and microcanonical 
calculations will be identical. 

A proper statistical-mechanical discussion of the 
"third law of thermodynamics" ought certainly to 
start from a correct expression for the entropy as 
the temperature approaches zero; that is, from Eq. 
(70) rather than (71). One may well ask: Under 
what conditions will these two expressions be equal? 
And, more generally, what conditions on the Hamil­
tonian insure that the properties of a macroscopic 
system at low temperatures resemble those of the 
ground state? Both questions are of some interest 
since it is frequently far easier to calculate properties 
of the ground state of a system than it is to obtain 
thermal averages at finite temperatures. 
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APPENDIX A: UNIFORM CONVERGENCE OF (40) 

The convergence of Ek(P, 0') to E(p, 0') on the 
closed rectangle p' ::; P ::; p", 0" ::; 0' ::; 0''' is mono­
tone. If it is not uniform, there is a number 6 > 0, 
an increasing sequence17 {K}, and points (PK, O'K) 
in the rectangle with the property 

(AI) 

Without loss of generality, assume that the points 
(Pk, O'k) converge to some point (Po, 0'0)' Choose 0'* 

in the interval (0'0, 0'''), or equal to 0''' if 0'0 = 0''', 
such that [note that E is continuous]: 

E(Po, 0'*) ::; E(Po, 0'0) + U. (A2) 

Choose K o large enough so that if K ;::: K o belongs 
to our sequence, 

(A3) 

(A4 

and therefore 

EK(PK, 0'*) ;::: EK(PK, O'K) ;::: E(PK, O'K) + 6 

;::: E(Po, 0'*) + !6, (A5) 

where we have used the monotonicity of EK in a 
together with (A3), (AI), (A2), and (A4). 

If K, L both belong to our sequence and satisfy 
K ;::: L ;::: K o we have 

EL(PK, 0'*) ;::: EK(PK, 0'*) ;::: E(Po, 0'*) + !6 (AB) 

since Ek is monotone decreasing in k. Now EL is a 
continuous function of P [see the remark following 
(37)]; thus the limit of (AB) as K ~ <Xl, 

EL(PO, 0'*) ;::: E(Po, 0'*) + !6, (A7) 

since it holds for all L ;::: K o in the sequence {K}, 
contradicts the assumption that Ek converges to 
E at (Po, 0'*). 

APPENDIX B: QUANTUM GASES WITH GENERAL 
DOMAINS AND WEAKLY-TEMPERED 

POTENTIALS 

We enclose the equation and section numbers 
from Fisher's papel in square brackets. "Weakly­
tempered" potentials satisfy the condition [3.10] in 
place of the "strong tempering" condition (31). 
The methods of Sec. IV yield a generalization of 
(37) in the case of weak tempering33

: 

~(N + M;nm) 

::; MN;n) + MM; m) + NMwB/R3+., (B1) 

where systems 1 and 2 are separated by a partition 
of minimum thickness R. In terms of normalized 
quantities, (Bl) may be written as 

Veep, 0') ::; V1El(Pl, 0'1) + V2E2(P2, 0'2) 

with 

v P = V1Pl + V2 P2, 

V 0' = V10'1 + V 20'2' 

(B2) 

(B3) 

Now (B2) is precisely the equivalent of [5.3] 
if in the latter each l4 is replaced by -fJ = _T-1 

times the corresponding E. The relation [5.4] be­
comes the condition (B3) on both density and 
entropy. 

The arguments following [5.4] are largely geo­
metrical in nature and may be applied to (B2) 

aa The • appearing in the exponent of R in Eqs. (Bl) and 
(B2) is a constant greater than zero and should not be con­
fused with the energy. 

84 Fisher's g is -fJ times the free energy f. 
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with the appropriate substitution. The only com­
plication is that one must keep track of IT as well 
as p. This may be done by regarding p where it 
appears as an argument of g, as in [5.5], or in equa­
tions such as [5.6], as a two-component vector 
(p, IT). However, in certain cases, as where / appears 
in [5.5] and [6.12], it is the density alone (first com­
ponent of the "vector") which appears in the anal­
ogous equations for the microcanonical ensemble. 

Note that we obtain a lower bound to E solely 
by the use of (30), whereas the analogous upper 
bound for g, Sec. [lIb], requires additional con­
siderations. In this respect the proof for a micro­
canonical ensemble is formally more simple than 
that for the canonical case. 

The arguments of Sec. [6] when applied to the 
microcanonical case yield the limiting e(p, IT) for 
a standard sequence of cubes. The convergence is 
uniform on rectangular domains lying within the 
region of definition and the proof is an obvious 
generalization of that in Appendix A. This uniform 
convergence plus the arguments of Sec. [9], suitably 
modified to apply to the microcanonical case, show 
that the same limiting e(p, IT) is obtained for a 
fairly general sequence of dimains. 

APPENDIX C: LEGENDRE TRANSFORMATIONS 

Let g(x) be defined and finite for x a real number 
in the connected interval a. Mandelbrojt36 calls the 

g*(y) = sup (x E a)[yx - g(x)] (C1) 

convex function associate(r with g(x). It is defined 
and finite for y in some set of real numbers <B. 
Assume that Yl < Y3 are both in 03, and YJ is a 
number lying between them. Define the function 

fz(y) = xy - g(x). 

It is evident that 

f"(y,);;.= (Ys - Ylf1 

(C2) 

X [(Ya - Y2)fz(Yl) + (Y2 - Yl)f~(Y3)] (C3) 

and therefore, from (C1) 

g*(Y2) ::; (Ys - Yl)-l[(Ya - Y2)g*(YI) 

+ (Y2 - YI)g*(yS)]' (C4) 

Thus g*(y) is defined and finite for all Y between 
YI and Y3, and therefore 03 is a connected interval. 

16 The results (01) to (010), with the exception of the 
geometrical interpretation, are taken from the paper by 
S. Mandelbrojt, Compt. Rend. (Paris) 209, 977 (1939), with 
minor modifications. 

II In Sec. VI, -f/*(x) is sometimes used in place of g*(x) 
and called the function associated with g(x). 

FIG. 3. Geometrical con­
struction for g*(y) when g(x) 
is convex. The slope of the 
tangent (dotted) line is equal 
to y. 

-g.(y) 

9 

Further, (C4) shows that g*(y) is convex downwards 
on <B. 

Consider 

g**(x) = sup (y E (3)[xy - g*(y)], (C5) 

the convex function associated with g*(y). Note 
that for x in a and y in 03, 

g*(y) ~ xy - g(x) (C6) 

and thus, from (C5), we obtain for x in a 
g**(x) ::; g(x). (C7) 

A stronger result holds when g(x) is convex down­
wards. A line drawn tangent to the curve g(x) 
at the point Xl in a, as in Fig. 3, lies everywhere 
on or below the curve g(x)16. If the slope of the 
tangent line is YI, its intercept on the g axis is 
-g*(Yl) given by 

(C8) 

which is just the formula for a Legendre transforma­
tion. Now by (C5) and (C8), 

g**(xl) ~ XIYI - g*(Yl) = g(Xl)' (C9) 

This together with (C7) implies that 

g**(Xl) = g(x l ) (ClO) 

for g(x) convex downwards and Xl in a. If g(x) is 
not convex downwards, (C7) and (ClO) together 
imply that g** is its "convex cover," the largest 
convex function less than or equal to g(x) for all 
X in a. 

Convergence of Sequences 

Theorem Ct. If g .. (x) is a sequence converging 
uniformly to g(x) on the interval el, then the g!(y) 
converge uniformly to g*(y) on 03, the interval 
where g*(y) is defined. 

Proof. If g .. (x) differs from g(x) by at most a 
for X in a, (C1) implies that g!(y) and g*(y) cannot 
differ by more than a. 

We also need the stronger result of Theorem C2 
below, the proof of which is more difficult and 
utilizes a lemma: If the sequence g .. (x) converges 
to g(x) on a, then 

lim g!(y) ~ g*(y). (ClI) .. 
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Proof. Given any E > 0, we can choose an Xo 
(depending on y) in a such that 

XoY - g(xo) ~ g*(y) - k (C12) 

Choose k large enough so that 

gk(XO) < g(xo) + !E. (C13) 

Inequalities (C12) and (C13) together with the 
definition of gt yield the result 

large. Similarly, if a extends to - 00, there is some 
x~ which is a lower bound to the XK for K suffi­
ciently large. 

We conclude that the XK have at least one point 
of accumulation Xo (which will not, in general, lie 
in a). Assume first that any interval (x*, xo) with 
X* < Xo contains infinitely many of the XK' Choose 
xo , Xb in a satisfying 

(C22) 

gt(y) ~ g*(y) - E. (C14) and choose M > 0 so that 

Theorem C2. Let gn(x) be a sequence of convex­
downwards functions converging on the interval 
a to a function g(x). Then the g'!(y) converge to 
g*(y) for all Y in the interior of ill, the interval 
where g* is defined. 

Proof. Assume the theorem is false. Then there 
is (see the preceding lemma) a YI in the interior 
of ill, some E > 0, and an increasing sequencel7 

{K} for which 

gl(YI) > g*(YI) + 2E. (C15) 

We shall show this leads to a contradiction. Choose 
X, in a so that 

XIYI - g(x l ) :::; g*(YI) :::; XIYI - g(x l ) + E. (C16) 

For each K for which (C15) holds we can find an 
XK in a such that 

YIXK - gK(XK) > g*(YI) + 2E. (C17) 

The XK all lie within some finite interval even 
when a is infinite. For suppose that (t extends to 
+ 00. Were it true that 

g(X) :::; g(x l ) + YI(X - Xl) (C18) 

for all X ~ Xl, g*(y) would not exist for Y > YI 
and Y would not lie in the interior of ill. Thus 
there must be some X2 > Xl in ft for which 

~ = g(X2) - g(XI) - YI(X2 - XI) > O. (C19) 

The gK converge to g on ftj therefore 

gK(XI) :::; g(xI) + !~, 
gK(X2) ~ g(X2) - !~ 

= g(x l ) + YI(X2 - Xl) + !~ 

(C20) 

for K sufficiently large. The convexity of gK implies 
that 

(C2l) 

for all X ~ x 2 • Upon comparison of (C16), (C17), 
and (C2l) we see that XK :::; X2 for K sufficiently 

YI - M < [g(Xb) - g(xo)]/(Xb - xo). 

Choose ~ > 0 sufficiently small so that 

M < E/2~, 
and choose K large enough so that 

(C23) 

(C24) 

(C25) 

gK(X*) > g(x*) - !e. (C26) 

From (Cl) and (C17) we obtain the inequality 

g(x*) ~ (x* - XI)YI + g(x l ) - E. (C27) 

Upon combining (C17), (C26), (C16), and (C27), 
we have 

When XK lies in the interval (x*, xo), the convexity 
of gK together with (C24) implies thae7 

gK(Xb) - gK(Xo) < gK(XK) - gK(X*). (C29) 
Xb - Xo - XK - x* 

As K approaches infinity, the left side of (C29) 
approaches the right side of (C23). This observation 
combined with (C28), (C24), (C25) and the fact 
that XK lies in (x*, xo) leads to a contradiction. 

An entirely analogous argument works for the 
case where any interval (xo, x*) contains infinitely 
many XK' If infinitely many XK coincide with Xo, 
(C17) combined with (Cl) implies that the UK do 
not converge to g at this point. 

APPENDIX D: PROOFS FOR THE THEOREMS 
OF SEC. VI 

Theorem 1. The convergence of the convex-up­
wards, monotone-decreasing functions MT) to f(T) 
implies that the positive and monotone-increasing 
functions 

(Dl) 

17 See the footnote on p. 327 of R. Courant, Differential 
and .Integral Calculus (Interscience Publishers, Inc., New 
York, 1936), Vol. II. 
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converge to 8(T) -d//dT at every point where 
the latter is continuous.3s Thus for T in (T1, T 2 ) 

there is a finite function peT) such that 

(D2) 

for all k. For a particular temperature let M be 
the smallest integer39 satisfying 

(D3) 

and let 2:1' 2:2 denote sums for which n < M 
and n ~ M, respectively. The inequality 

ZVk8k(T) = 2: (log Z + ~(n)/T)e-~(n)IT 
" 
~ 2: (log Z + ~(M)/T)e-£<n)IT (D4) 

2 

combined with (62) in the form 

(D5) 

2: e-£<n)IT :::;; exp [- Vk/t(T')/T] 2: n -T' IT. (DlO) 
2 2 

If a bound for the sum on the right side of (DlO) 
is obtained from the corresponding integral, we have 

2: e-~(n)IT :::;; ! exp [- Vkn(T)/T] :::;; !Z, (Dll) 
2 

where the second inequality makes use of (64). 
Combining (Dll) and (63), we arrive at (D7) as 
in the previous proof. It is clear that log M is of 
order Vk for large k, and hence IMT) - tt(T)1 is 
at most of order V;l log Vk • 

APPENDIX E: SPECIAL EXAMPLES 
OF SPIN SYSTEMS 

1. A system for which Ek and et do not converge 
to the same limit. Consider a linear chain of atoms 
of spin 1 with Hamiltonian 

H = 2: h(i, i + 1), (E1) 
; 

log Z ~ log M - HM)/T 

and with (D3) and (D2) yields the result 

2: e-£<n)IT :::;; !Z. (D6) where 
2 

We may use (D6) and (63) to obtain the estimate h(i, i + 1) = D(IT~ + IT~+l) + oo(IT~ - IT~+1)2, (E2) 

:::;; 2(log M) exp [- Vktt(T)/T]. (D7) 

Upon taking the logarithm of both sides of (D7), 
we see that MT) can exceed tVT) by at most a 
term of order V;l log Vk • This observation together 
with (64) completes the proof. 

Theorem 2. Since the convex-downwards func­
tions Et(IT) converge to E(IT), Theorem C2 of Ap­
pendix C shows that the tt(T) converge to a func­
tion t(T) for T in (T1 , T2)' Given a particular T 
in (T t , T2) choose some T' > T in the same interval. 
Let M be the smallest integer satisfying 

T { 2T log (M - 1) ~ T' _ T log T' _ T 

+ Vk[ft(T);; ft(T')]} (D8) 

for a given value of k, and let 2:1' 2:2 denote sums 
for which n < M and n ~ M, respectively. The 
inequality 

exp [-Hn)/T'] :::;; n-1 exp [- Vk/t(T')/T'] (D9) 

obtained from (63) may be used to obtain the esti­
mate 

38 Reference 6, Appendix A. 
IV In cases where (D3) or (D9) yields a value of M ex­

ceeding the total number of energy levels N, M should be 
set equal to N. 

D is a constant, and IT i is the z component of the 
spin operator with possible values 0, ± 1. The lowest 
energy for a chain of length V is zero, correspond­
ing to the nondegenerate eigenfunction 

IT; = 0, i = 1,2, ... , V. (E3) 

At an energy 2VD there are 2 v eigenstates of the 
form 

IT; = ±1 i = 1,2, ... V. (E4) 

In the limit V ~ 00, the EV(IT) converge to 

e(IT) = {O for IT < log 2, (E5) 

2D for IT ~ log 2, 

whereas the e~(IT) converge to 

{ 

0 for IT < 0 

E*(IT) = 2DIT/log 2 for 0:::;; IT :::;; log 2 

2D for IT ~ log 2. 

(E6) 

The Hamiltonian (El) does not satisfy the condi­
tions of Sec. III due to the infinite matrix elements 
in (E2). Nevertheless, the reader may verify that 
the t~(T) and fv(T) both converge to the same 
limit in agreement with Theorem 2 of Sec. VI. 

2. Systems for which ITo [defined by (70)] differs 
from IT' [defined by (71)]. These examples, unlike 
the one given above, satisfy all the conditions given 
in Sec. III. 
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2a. Consider a linear chain containing V atoms 
of spin 1 with Hamiltonian 

V V-1 

H = J L: O"~ - J L: (0";0";+1)2. (E7) 
i-I i-I 

A given configuration of the chain may have n 1 

consecutive spins with 0"; = ±1 followed by m1 

consecutive spins with 0"; = 0 followed by n2 con­
secutive spins with 0"; = ±1, etc. If there are p 
sections of the type 0"; = ±1, the energy is 

E = pJ. (E8) 

Clearly the ground state, 0"; = 0 for all i, is non­
degenerate, whereas the 2 v states of the form 

0"; = ±1, i = 1,2, .. , , V (E9) 

all have energy E = J. We conclude immediately, 
using (70), (71), that 

0"0 ~ log 2; 0"' = O. (EI0) 

In fact it is not hard to show that 0"0 is precisely 
log 2. The interested reader may wish to verify 
that the same value is obtained in the canonical 
formalism [using the left side of (69)]. Furthermore, 
it may be shown that the thermal average (O"~) in 
the thermodynamic limit approaches 1 as T ---+ 0 
whereas it is zero in the ground state. 

2b. The results are also interesting when the 
foregoing example is generalized to three dimen­
sions. Consider a cube containing V = L3 atoms 
of spin 1 arranged in a simple cubic lattice and 
having a Hamiltonian 

v 
H = 3J L: O"~ - J L: CO";0";)2, CEll) 

i-I (ii) 

where the second sum goes over all 3 (L3 
- L2) 

pairs of nearest neighbors. The ground state with 
E = 0 is again given by 0"; = 0 for all i. The 2v 
states where all 0"; are either + 1 or -1 have energy 
equal to 

CEI2) 

and the analysis of Sec. VII shows us that (E10) 
is true once again. Further investigation shows that 
H2V) is of order Vi, though of course less than (E12). 
Thus to obtain 0"0 correctly, it is necessary to con­
sider all levels within an energy interval above the 
ground state increasing at least as rapidly as VI. 

In both cases 2a and 2b the discrepancy between 
0"0 and 0"' may be remedied by imposing periodic 
boundary conditions. There are other ways in which 
these examples are artificial, but at least they do 
illustrate the fallacy in supposing that the low­
temperature thermal properties always resemble 
those of the system's ground state. 

APPENDIX F: THE IDENTITY OF E AND E IN THE 
THERMODYNAMIC LIMIT 

From the definitions (8b) and C1Ob) it is evident 
that EkCO") cannot exceed EkCO") for a system Dk of 
volume Vk , and for 0" ::; 0 the two quantities coincide. 
Given 0" > 0, choose 0"1 < 0", and let N1 and N be 
the smallest integers not less than exp (Vk 0"1) and 
exp (VkO"), respectively; then 

EkCO") = CVkNr1{~ Hn) + n.t+l ~cn)} 
~ N 1E. k /NVk + eN - N1 - I)EkC0"1)/N, CFl) 

where EUk = Hl) is the ground-state energy. As 
k ---+ ro, the ratio N1/N decreases as exp - Vk(O" - 0"1), 
whereas Euk/Vk is bounded from below for the 
systems discussed in Secs. III, IV. Thus as k ---+ ro, 

E(o") ~ lim Ek(O") ~ EC0"1) (F2) 
k_oo 

for any 0" < 0"1' But E(o") is continuous for 0" < 0"". 
and therefore 

lim Ek(O") = E(o") (F3) 
k_oo 

provided 0" < 0"".. 
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We consider the mathematical model of an ideal gas of charged bosons or fermions in an n-dimen­
sional space, treating n as a continuous variable. The investigation shows the extent to which the 
magnetic behavior depends on the dimensionality of the system. In particular, the charged Bose 
gas in a homogeneous magnetic field does not condense unless n > 4, in contrast to the field-free gas 
which condenses for n > 2: however so long as n > 2 and T < To this system completely expels 
homogeneous magnetic fields weaker than a certain critical field, Ho. (To is the field free transition 
temperature.) This field expulsion comes explicitly from the condensed ground-state bosons for 
n > 4; but it is still present, and Ho has the same form, for 4 > n > 2 where there is no condensation. 

1. INTRODUCTION AND SUMMARY 

I T is well-known that a three-dimensional ideal 
gas of charged bosons exhibits a Meissner-Ochsen 

feld (M-O) effect below its transition temperature!. 
This system thus serves as a simple example of a 
superconductor. The mathematical model of an ideal 
charged Bose gas in two dimensions has also been 
explored': this gas does not condense, but at suf­
ficiently low temperatures it possesses a very large 
diamagnetism which leads to an "imperfect" M-o 
effect which is practically indistinguishable from a 
perfect London one. 

In this paper we consider the abstract mathe­
matical modela of an ideal charged Bose or Fermi 
gas in n dimensions, in the presence of a magnetic 
field. The number of spatial dimensions, n, is treated 
as a continuous variable. We believe that this rather 
"unphysical" mathematical investigation is worth­
while in that it helps to distinguish those properties 
which depend only on the existence of a condensa­
tion in the absence of an external field from the 
properties which are explicit to three dimensions.· 

A recent study' of the thermodynamics of ideal 
(uncharged) quantum gases in n dimensions shows 
that Fermi statistics leads to expressions in which 
the number of dimensions is unimportant. For Bose 
statistics there are two main regions: for n Z 2 
there is no condensation into the ground state at 
low temperatures; for n > 2 there is such a con-

I M. R. Schafroth, Phys. Rev. 100, 463 (1955). 
• R. M. May, Phys. Rev. 115, 254 (1959). 
a It is perhaps worth noting that even the two-dimensional 

uncharged Bose gas does not seem to be realized in practice 
as the limit of very thin films [for a detailed discussion see 
J. M. Ziman, Phil. Mag. 44, 548 (1953) and references 
therein], nor does the two-dimensional charged Bose gas 
model I seem to be relevant to thin superconductors [see 
J. M. Blatt, Theory of Superconductivity (Academic Press, 
Inc., New York, 1964), p. 363]. It is to be emphasized that 
the present paper is devoted to a mathematical abstraction. 

4 R. M. May, Phys. Rev. 135, A1515 (1964). 

densation below a critical temperature, To; and for 
n > 4 there is a discontinuity in C y at To. 

In the present study of charged ideal gases in 
n dimensions we get results analogous to those of 
Ref. 4. For fermions, we get the usual diamagnetism 
of a gas of charged particles for all (positive) n. 
A similar result (i.e., diamagnetism but no M-o 
effect) pertains for hosons with n Z 2, although 
here the diamagnetism becomes very large as the 
temperature tends to zero. For n > 2, the ideal 
Bose gas exhibits a M -0 effect below its transition 
temperature. 

To make this last statement quantitative, we 
define a response function K(q), 

M(q) = K(q)B(q), (1) 

where M(q) is the magnetization corresponding to 
the applied inhomogeneous field B(q) with wave­
number q. Then for T < To and 4 > n > 2, the 
charged Bose gas gives in the limit q --t 0 

_~N [{I _ (T...)in} 
K(q) = mc'q' V T. 

+ ! (.!DL)i"- l (T )i"] 
'Y 2mkT T c (2) 

['Y is a numerical constant, given by Eq. (33)]. For 
n> 4 we get 

K(q) = -~ N [{I _ (T...)!"} 
mc'l V To 

+ r(in - 1) (.!DL). (T...)i"] 
6r(!n) 2mkT To . (3) 

In each case the l/q2 singularity corresponds to a 
perfect or "London" M -0 effect. On the other hand 
for n < 2, K(q) is regular at the origin. Reference 2 
is devoted to the special case n = 2. 

A more significant difference between charged 

1462 



                                                                                                                                    

MAGNETIC PROPERTIES OF QUANTUM GASES 1463 

bosons with n > 4 and those with 4 > n > 2 is 
found when one considers the application of a homo­
geneous rather than an inhomogeneous magnetic 
field.6 For n Z 4 the charged Bose gas no longer 
condenses. However provided the external field is 
less than some critical value Ho [given by Eq. (51)] 
it is completely expelled at temperatures below To. 
(T. is the condensation temperature in the absence 
of a magnetic field.) This is so despite the absence 
of any phase transition or macroscopic occupation 
of the ground state. For n > 4 the presence of the 
external homogeneous field has no effect on the con­
densation; below the transition temperature To the 
condensed bosons in the ground state expel fields 
weaker than H c' 

In Sec. 2 we evaluate the response function K(q) 
for an n-dimensional ideal gas of charged bosons or 
fermions in the presence of an inhomogeneous mag­
netic field, and consider the limit as q -t O. In Sec. 3 
we investigate the behavior of such n-dimensional 
gases in the presence of a homogeneous magnetic 
field, and justify the remarks made in the preceding 
paragraph. 

2. INHOMOGENEOUS FIELDS: K(q) 

To begin we write down an expression for the 
response function K(q) for a system in an n-dimen­
sional space. 

For a gas of noninteracting ideal particles, with 
masses m and charges6 e, the field-free Hamiltonian is 

(4) 

For a weak inhomogeneous magnetic field we can 
use perturbation theory6 to derive a relationship be­
tween the magnetization M and the applied field B: 
expressed in wavenumber space this relationship has 
the form (1). The derivation of KCq) is provided 
for 3 dimensions in Ref. 1 and for two dimensions 
in Ref. 2. Since the analysis is independent of the 
number of dimensions until a final obvious step, 
we will not recapitulate it here but will simply state 
the result: 

l 1 1 
K(q) = - mc2 q2 (n - l}V 

6 Perturbation theory is valid for inhomogeneous fields, but 
for homogeneous fields an arbitrarily small field can produce 
qualitative changes in the particle wavefunetions, once the 
volume is big enough. Another way of putting this is to say 
that the homogeneous field can be derived from the inhomoge­
neous field as the limit q ..... 0 only when K(q) is regular at 
the origin. 

6 Note that in n dimensions, e has the dimensions e' rv 

ML"T-s and thus e1j(mc2) rv L,,-2 [ef. Ref. 2, Eqs. (3.3) and 
(3.4)]. 

(5) 

q is a wavenumber vector in an n-dimensional space, 
and FoCE) is the field-free distribution function of 
the ideal quantum gas, 

FoCE) = {exp [aCE - #L)] =t= 1}-1 (6) 

(#L is the chemical potential, a == l/kT). 
The evaluation of (5) in the limit q -t 0 proceeds 

differently for the two cases where (a) Fo(E) is 
regular at E = 0, and (b) Fo(E) is singular at E = O. 

Since Fo is the field-free distribution function, we 
can immediately appeal to Ref. 4 to see that, for 
fermions, FoCE) is regular for all n. For bosons in 
n Z 2 dimensions, FoCE) is again regular; but for 
bosons with n > 2 there exists a transition tem­
perature, 

, 4r/i,2 ( N )2/ .. 
'1. = 2mk Vt(!n) , (7) 

below which there is macroscopic occupation of the 
ground state by a number of bosons No: 

No = N{l - (TIT.)in}. (8) 

Thus for bosons in n > 2 dimensions and with 
T < T., Fo(E) is not regular at E = O. 

A. Fo(E) Regular at E = 0 

Here we can use Eq. (2.18) of Ref. 1 to write 

F (/i,2(p + lq)2) _ F (/i,2(P _ tq)2) 
o 2m 0 2m 

= /i,2p•q F,(~) 
m °\2m 

+ - -p.q F'll ~ + 0qi 1 (/i,2 )3 (li2 2) 
3 2m 0 2m ' 

(9) 

where the prime indicates differentiation with respect 
to the energy E = h2p2/2m. Assuming the usual 
periodic boundary conditions, the sum over p in (5) 
can be replaced by an n-dimensional integral in the 
thermodynamic limit (i.e., V -t (X) , N -t (X) , N IV -t 

finite): 

~ ~ -t (2:)" {' p .. -l dp J dn. (10) 

The J dn represents an integration over the surface 
of an n-dimensional unit sphere. 
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As q ~ 0, Eq. (5) now reduces to 

e2h2 1 1 
K(q) = - m2c2 q2 (n - 1)(21l't 

X 1~ pn-1 dp J dn (1 - n cos2 (J) 

X p2 F' + !!:...!l.L { 
h2 2 2 

o 8m 

X [F~' + ~~ COS
2 (JF~" ] + el }. (11) 

The surface area of the n-dimensional unit sphere, 
Sen), is well known, 

Sen) = 21l'l njr(!n). (12) 

This result is easily generalized to gee 

J dn cos2 (J = ~ Sen), (13) 

J dn cos
4 

(J = n(n ~ 2) Sen). (14) 

We see that the leading term in (11) vanishes 
when the angular integral is performed, and so does 
the term in F~'. For the remaining term, in F~",we 
can perform successive integration by parts to finally 
get 

K(q) = (n - 2) e
2
h

2 
N(E-

1
) (1 + e 2) 

24 m2c2 V q . (15) 

By (E- 1
) we mean8 

(E-1) = 1.. " (2m )F (h
2p2

) 
N 7' h2p2 0 2m 

2 F±(-cx/J.;!n-l) 
(n - 2)kT F ±( -CX/J.; !n) 

(16) 

The generalized Riemann zeta function F+(z; m) 
and its relative F _(z; m) are defined as 

co -i-
" ;+1 e F ±(z; m) = .L..i (±1) -:;;;-. 
;-1 J 

(17) 

/J. can be replaced by N jV in (16) by use of the 
relationship 4 

NjV = (2mkTj41l'1i2)lnF±(-cx/J.; !n). (18) 

We observe that at high temperatures, 41l'h2j 
(2mkT) «d2 (d is the interparticle spacing, d" 

7 These expressions are derived from the identity 
f e-r'f(r· a) dr = (f e-%' dx)n-1(f e-u'f(ya) dy). 

8 For 0 < n < 2 we must be careful in the partial inte­
grations; the resulting F±( -aJ.l; in - 1) are the usual 
analytic continuation of the generalized Riemann zeta func­
tions to such values of n. 

V jN), we must have CX/J. large and negative to 
satisfy Eq. (18). This is just the limit of Boltzmann 
statistics, and we get 

(19) 

for both Bose and Fermi statistics, regardless of the 
dimensionality of the system. 

At low temperatures [41l'h2/ (2mkT) »d2] in n­
dimensional Fermi gases, we get the familiar occupa­
tion of all states up to the level of the Fermi sea, 
and hence 

where EF is the Fermi energy, EF = /J.(T = 0). 
The Bose gas at low temperatures [41l'h2/ (2mkT) » 

d2
] condenses for n > 2 and is treated separately 

below. For n < 2, however, we can use (16) together 
with the expansion9 

F+(z; m) = zm- 1 r(1 - m) 

+ :t(-z)ir~~-i) (21) 
i-O 'L 

(m not an integer) to get 

(n - 2)(E- 1
) 

1 ( 41l'h2 )n/(2-n) (2 - n) 
= kT 2mkT d2 [r(1 _ !n)]2/(2 n) 

(22) 

Thus although K(q) is always regular in the limit 
q ~ 0 for bosons in n < 2 dimensions, this diamag­
netic term can be very large as the temperature 
becomes very small. 

B. Bosons in n > 2 dimensions (T < T c). 

For temperatures below a critical temperature To, 
defined by (7), the Bose gas condenses for n > 2. 
In this event, Fo(E) is singular at the origin and 
(9) is no longer useful. The ground state is highly 
occupied [cf. Eq. (8)] and must be treated separately; 
for the other states we can use the Bose distribution 
function with J1. = 0, and replacement of sums by 
integrals is justified. 

If we call the contribution to K(q) from the con­
densed bosons Ko(q), and the contribution from the 
remaining states K1(q), we can immediately use (5) 
to write 

(23) 

D J. E. Robinson, Phys. Rev. 83, 678 (1951); J. Clunie, 
Proc. Phys. Soc. (London) A67, 682 (1954). 
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No is given as a fraction of the total number of 
bosons, N, by Eq. (8). 

On the other hand, for the noncondensed particles 
we have 

e2 1 1 
Kl(q) = - me2 q2 (n -- 1)(211')" 

xPJ dp {en - 2) + 2(p2 - l/4)} 
(P -- iq)·q 

x {exp (Oln2p2/2m) - 1 rt. (24) 

It is convenient at this point to introduce the dimen­
sionlessvariables s=npl(2mkT)1 and t=hq/(2mkT)1, 
and to expand the distribution function in Eq. (24), 
to arrive at 

(25) 

There is no question as to the validity of taking the 
principal value in the angular integration, nor of 
interchanging the order of summation and integra­
tion, because the integrand in (25) has been obtained 
by rewriting the summand in (5) which is perfectly 
regular. Equation (25) can be reduced to get7 

e2 (2mkT)i"" 1r-
1 

K1(q) = - mc2q2 411'h2 t; r-l)/2 
X P L: due-'U'{1 + ji(u ~ it)}' (26) 

The integral here can be rewritten to give 

e
2 

(2mkT)i" 
K1(q) == - mc2q2 411'h2 

(27) 

Recalling the definitions (7) and (17), we can 
finally write 

e
2 N (T )1" 

K1Cq) = - mc2l V~(in) T. 

xlI dv {lim [F+(T;in) - F+(t2(1 - v2)/4;!n)]I. 
o T-tO 

(28) 

Now we can proceed to the limit of very small 
q (i.e., t « 1). Equation (21) will be used to expand 
the F + functions in this limit; inspection of (21) 

shows that we must discuss two cases, namely n > 4 
and n < 4. For n > 4 and t < 1 we have 

lim [F+CT; !n) - F+Ct2(l -- v2)/4; in)] .-0 
= lt2 (1 - v2)t(in - 1)(1 + 0t(n-4)/2), (29) 

whereas for 2 < n < 4 and small t we get 

lim [F +(T; in) -- F +(t2(1 -- v2)/4j in)] 
.-0 

= -- ft2(l - v2)/4}in
-

1 r(1 - in)(l + 0t(4-")/2). 

(30) 

These two expressions are divided by the special 
case of n = 4 where one can show 

lim (F+(Tj 2) -- F+(t2(1 -- v2)/4; 2)] 
<-.0 

The integration over v is now trivial and we finally 
have forn > 4 

e2 
( Jiz ) ~(i11, - 1) N (T )in 

K1(q)::: -- 6me2 2mkT ~(in) . V To ' 
(31) 

and for 2 < 11, < 4 [using the relation r(z)r(1 -- z) := 

1r/sin (lI'z)] we get 

e2 ~Ji2q2 )1"-1 N (T )tn 
Kl(q) ~ - --2-2 -kT V -T . 

.-0 'Ymc q m • 
(32) 

'Y is a numerical constant: 

'Y = 1r -
3/22"-lr[i(n + 1)]~(!n) sin [ill'(n - 2)]. (33) 

The special case 11, = 4 leads to 

ii ( Ji2 ) N (T )2 (2mkT) 
K 1(q)::: - 6mc2 \2mkT r(2)V T. log n2 q2 • 

(34) 

Combination of these results for the noncondensed 
bosons with the contribution (23) for the condensed 
bosons leads to the results (2) and (3) stated in the 
Introduction. 

3. HOMOGENEOUS MAGNETIC FIELDS 

In this section we restrict attention to the charged 
Bose gas in (n > 2) dimensions (see Sec. 2B). The 
reason for this restriction is simple: all other cases 
have a response function K (q) which is regular at 
q = 0, and so the behavior in a homogeneous field 
can be found by taking q = 0 in the results of Sec. 2. 
For the Bose gas with n > 2 below To, K(g) is 
singular at the origin and to obtain the behavior 
in a homogeneous field it is necessary to include the 
field in zeroth order.s 
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For an ideal charged Bose gas in an acting homogeneous field B in n-dimensional space (n > 2), the 
grand canonical partition function exp (-aO) may be derived in a standard way10: 

o = kT~~ 2L2 L: i: log 11 - exp [-a(~oB(2v + 1) + 1i2e/(2m) - J.I)Jl. 
fU; 11" k .-0 

(35) 

Here we have assumed periodic boundary conditions, 
so that k = L1</211" with 1< being the points on a 
unit cubic lattice in (n - 2) dimensions. The other 
2 dhnensions are involved with the magnetic field 
to give the eigenvalues with the summation index v. 
p.o is the Bohr magneton, ~o = eli/2mcj to avoid 
negative occupation numbers we must have ~<p.oB. 

Replacing sums by integrals, and expanding the 
logarithm to sum over v, we get the n-dimensional 
generalization of the expressions in Ref. 1 and 2: 

o kT GO e-2iu 
( 2jx ) 

(oj == V = -}!' ~ in+l 1 _ e 2j~, (36) 

N 1 GO e-2iu 
( 2jx ) 

7J == V = A" ~ -,.. 1 _ e 2j~ • (37) 

For notational convenience we have introduced the 
variables 

x == ap.oB, 

z == !~oB - p.)/P-oB, 

and the thermal wavelength A, 

'11.
2 == 411"ali2/(2m). 

(38) 

(39) 

(40) 

We can immediately make an important comment 
about the expression (37) for N IV. Bearing in 
mind that p. < p.oB, i.e., Z > 0, the series in (37) 
cannot diverge more strongly than the series "l:l-ln

; 

that is to say, the series in (37) has an upper bound 
for n > 4, but not for n < 4. The Bose gas does not 
condense in a fixed homogeneous magnetic field tor 
n < 4, but does so condense tor n > 4. 

Just as in the familiar three-dimensional field­
free Bose gas, so here for n > 4 our replacement 
of sums by integrals in (35) is incorrect below the 
critical temperature: the ground state must be treated 
separately, and expression (37) represents only the 
remaining bosons outside the ground state. 

We now wish to evaluate the magnetization M, 
which is derived from O(B) by use of the thermo­
dynamic relation 

M = -I/V(aO(B)/aB)".I" (41) 

The B-H relationship then follows from 

B = H + S(n)M, (42) 

10 W. Pauli, Proceeding8 of the Solvay Congres8 1990 
(Gauthier-Villars, Paris, 1932) pp. 183-190. 

with Sen) as the surface area of the unit sphere in 
n dimensions [Eq. (12)]. (Notice that the "acting" 
field has been identified with the average microscopic 
field in the gas, B; the argument is again as given 
in Refs. 1 and 2.) Applying (41) to (36), the mag­
netization is written as 

P.o GO e-2iu 
( 2jx ) 

M = ,,, L: -:::tn+l 1 _ -2i~ 
1\ ,-1 1 e 

(I .[ii~ + IJ) 
X \X - 1 ij~ - 1 . (43) 

We consider separately the two cases of 4> n > 2 
and n > 4, since the analysis will obviously be 
rather different. In each case it is also necessary to 
treat separately the opposite extremes of zero tem­
perature, x » 1, and finite temperatures, x « 1. 

A. 4 > n > 2. No Condensation in Homogeneous Field 

First we consider the zero-temperature limit, x »1. 
Here we can immediately write 

M = -(2x~0/A")F+(2xz:!n - 1). (44) 

Since there is no condensation, Eq. (37) relates p. 
to N IV, and we get for x » 1 

(45) 

Secondly we consider the less trivial case where 
x « 1. Here it is shown in Appendix A that if 
T > To, where T. is the condensation temperature 
in the absence of a field [Eq. (7)], then 

M = -xB (46) 

with 

x = p.~7J/3kT, if T» To, (47) 

and 

~~7J { [(T )1" J}Cn-4)/C .. -2) 
X = 6kT (n - 2) T. - 1 

{
2r(2 - !n) (T )in}2/cn-2). :> 

X ran) To ' If T To. (48) 

On the other hand, if T < To, then 

M = -J.l07J1I - (T/'l'o)i"}. (49) 

This latter result joins to the zero-temperature re­
sult (45). 
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Above T., the magnetization amounts to a small 
diamagnetism in agreement with (15). Below T., 
even though there is no condensation and no macro­
scopic occupation of the ground state, there is, never­
theless, a spontaneous magnetization (negative in 
sense) given by Eq. (49). The B-H law below T. 
can be written 

B = H - He; 

B = 0; 

H> H. 

H < H. 
(50) 

This corresponds to expulsion of applied fields which 
are less than a certain critical value, He, 

H. = S(n)~o1]ll - (TIT.)!"}. (51) 

B. n > 4. Condensation in Homogeneous Field 

We consider first finite temperatures, x « 1. 
Now for n > 4, the series in (37) converges as z ---+ 0, 
and so it can be treated more simply than was the 
case for n < 4. For x «1 we have 

1] = (1/A")F+(2xz; !n){1 + ex}. (52) 

Ignoring the correction terms, we have an expression 
for N IV which is identical with that for the n di­
mensional Bose gas in the absence of a magnetic 
field (except that IJ. ---+ ~ - 1J.0B). Thus below a 
critical temperature, given by Eq. (7), we have z ---+ 0 
and a macroscopic number of bosons, '170 = NolV 
[given by Eq. (8)], occupy the singular ground ~t~te. 
The other states, which accommodate the remammg 
'171 = '17 - '10 bosons, obey Eq. (52): 

'171 = 'I7(TIT.)l"{1 + ex}. (53) 

For n > 4 and x « 1 it is similarly a straight­
forward matter to find the magnetization above T.: 

(54) 

Below T. it is necessary to treat the ground state 
separately, and the result is 

(55) 

Comparing this with the corresponding expression 
for '17, we get 

(56) 

That is, for T < To, 

(57) 

The above analysis of the case x « 1 has been 
predicated upon the assumption Xo « 1, i.e., 1J.0B « 
kTo• Retaining this assumption (see Appendix B), 
it is easy to see that for Ilzero" temperature, x » 1, 
we again get the result (45) which joins to Eq. (57). 

As in Part (A) of this section, we have found that 
above T. there is a diamagnetism in accord with 
Eq. (15); below To there is a spontaneous magnetiza­
tion which leads again to the B-H law (50), with 
H. given by (51). 

The noteworthy feature is that for n > 4 the 
field expulsion comes explicitly from the condensed 
ground-state bosons [the noncondensed bosons con­
tribute the small diamagnetic term in (57)], whereas 
for 2 < n < 4 the same field expulsion is achieved 
without any condensation. 
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APPENDIX A 

In this Appendix we calculate M as a function 
of N IV for 4 > n > 2 and x « 1. 

For x « 1 and xz < 1 we can replace the sum 
in (43) by an integral to get 

M = - ~o/A")(2x)l"-1 J(z) (58) 

with 

1 .. dse-" ( s )(e' + 1 2) 
J(z) = 0 ~ 1 - e-' e' - 1 - -; . (59) 

We want a similar relation between '17 and z. Before 
replacing the sum in (37) by an integral, we first 
arrange that the integral will converge at its lower 
limit: 

'17 = (l/A"){r(!n) + (2x)1..-lf(z)} (60) 

with 

1'" ds ( se-" ) 
fez) = 0 SF 1 _ e • - 1 . (61) 
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Using the identity (7) which defines T. in the absence 
of a field, Eq. (60) becomes 

'l/Xn{1 - (TIT.)!n} = (2x)!n-lf(z). (62) 

Limiting forms for fez) are easily obtained. For 
z> 1, 

which for 4 > n > 2 gives 

fez) = 2r(2 - in) Z!n-I(1 + 0 !). (64) 
(n - 2) z 

For z < 1, 

fez) = 1'" dse-"sHn + 0z1n-
l

, (65) 

which for 4 > n > 2 gives 

fez) = r(2 - fn)zln-2(1 + 0z). (66) 

The corresponding limiting forms of J(z) are 

J(z) !4 H(2 - !n)zln-\l + 01/z), (67) 

J(z) ~ r(2 - !n)zin
-

2 (1 + 0z). (68) 

Substitution of (64) and (66) into (62) shows that 
z < 1 corresponds to T < T., and z > 1 to T > Te. 
Elimination of z between (58) and (62) leads to 

M = -~o'l/{l - (TIT.)ln} (69) 

for T < Te , and to 

M = _~oX'l/ (n - 2){(TIT.)in - I} 
6 (2xz) 

(70) 

with (2xz) to be found from (64) and (62) for 

T> T •. These are the results quoted in (48) and (49). 
As we noted en route, the replacement of sums 

by integrals is valid when x « 1 if xz < 1. Thus 
we must distinguish between the situation x- 1 > 
z > 1 which gives (64), (67), and hence (70), and 
the situation where z is so large that z > x-1

• In­
spection of the results above shows that x- 1 > 
z > 1 corresponds to 1 > (T - T.)IT. > 0, and 
z > X-I to T » T •. In this latter case, both the 
series (37) and (43) are simply dominated by their 
leading term, and we get Eq. (47) for T » Te. 

APPENDIX B 

The assumption made in Sec. 3 is most certainly 
true for any reasonable assumption about e, m, '1/, 

and B in three dimensions. However, since we are 
concerned with an abstract mathematic model, we 
should also mention the results if ~oB » kTe in 
n > 4 dimensions. In this event the Bose gas con­
denses below a temperature To which is related to 
the field free condensation temperature T. by 

To ( rein) )2/(n-2) 
- = < 1 
T. 2r(!n - l)x. 

(71) 

(x. == ~oBlkT. » 1). Comparison of the expressions 
for M and '1/ both above and below this new transi­
tion temperature, To, shows that 

(72) 

so long as x » 1, i.e., so long as T « TeX •. Since 
TeX. » T. » To, Eq. (72) will be valid even far 
above To. Once the temperature is sufficiently large 
(x < 1), the system will again be diamagnetic, de­
scribed by Eqs. (52) and (54). 
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A Proof of Nakanishi's Inequality* 
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Nakanishi's conjectured inequality for the coefficients of the external masses and invariants in 
the Feynman denominators for scattering processes is proved by a deterIninantal method suggested 
by the analogy between Feynman diagrams and electrical networks. 

IN the absence of spin, the contribution to a given 
invariant amplitude of a connected Feynman 

diagram G with N external lines, n internal lines, 
v vertices and I = n - v + 1 independent closed 
loops may be writtenl

-
3 in the form 

(1) 

where the integration variables a, are the Feynman 
parameters associated with the internal lines i of G. 

The function U(a) may be defined by 

D(a) = ~ a· a· '" a· £..J ~l '&51 1.1' (2) 

summed over all sets of I internal lines {ii, i 2 , ., • , i l } 

having at least one member in every closed loop 
of G. When G contains no closed loops, U is defined 
to be unity. 

V(p, a) is of the form3 

.. 
V(p, a) = L a,m~ - Q(P, a), (3) 

i-I 

where m, is the mass of the internal line i and 

(4) 

The summation in (4) is over all the channels h 
of the given amplitude, where by a channel h = 
(hi I h2) we mean a partitioning of the external 
lines, (3 = 1, ... , N, into two disjoint classes hi 
and h2 each having at least one member. The 
quantity 8h is the corresponding channel invariant, 
given in terms of the inwardly measured external 
momenta pfJ satisfying 

• The research reported in this document has been spon~ 
sored by the Air Force Office of Scientific Research, OAR, 
under Grant No. AF EOAR 63-79 with the European Office 
of Aerospace Research, U. S. Air Force. 

I Y. Nambu, Nuovo Cimento 6, 1064 (1957). 
Z K. Syxnanzik, Progr. Theoret. Phys. (Kyoto) 20, 690 

(1958). 
a N. Nakanishi, Progr. Theoret. Phys. (Kyoto) Suppl. 18, 

1 (1961); Progr. Theoret. Phys. (Kyoto) 26, 337 and 927, 
(1961). 

(5) 

by 

(6) 

When h is such that hi or h2 consists of a single 
external line fJ of mass mfJ, 8h takes the constant 
value m~. The functions .lh(a) are of the form3 

(7) 

where 

The symbol S in (8) stands for an intermediate 
state, i.e., a set S of internal lines such that G 
separates into two parts HI and H2 when all i E S 
are opened up, while every diagram obtained from 
G by opening up the lines of a proper subset of S 
is connected. S(h) denotes the set of all S such 
that (hi I h2) = h, where hi and h2 are the sets 
of external lines of G attached to HI and H 2, re­
spectively. 

In the case of scattering (N = 4), it is natural 
to write 

4 

Q(P, a) = Q(8, t, u; a) = L .I.Bm~ + .1.8 + .I,t + .I .. u 
fJ-I 

where 8, t, and u are the usual invariants 

8 = (PI + P2)2 = (Pa + P4)2, 

t = (PI + Pa)2 = (P2 + P4)2, (10) 

u = (PI + P4)2 = (P2 + Pa)2, 

which satisfy 
, 

8 + t + u = L m~. (11) 
/I-I 

1469 
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It has been conjectured by Nakanishi3 that the 
W A functions in (9) satisfy the inequalities 

W IW 4 ~ W.W" 

W I W 2 ~ W.W", 

W1Wa ~ W"W., 

W 2W 3 ~ W.W" 

W 3W 4 ~ W,W", 

W 2W 4 ~ W"W., 

(12) 

for all nonnegative values of the a's. No counter­
examples disproving (12) have been found, and it 
has already been shown that (12) holds for a very 
wide class of diagrams.3

•
4 We shall give a general 

proof of (12) based on the analogy with electric 
circuit theory.6.6 Only the first inequality will be 
proved, as the other five may be obtained from it 
by relabeling the external lines. 

In the general case, the diagram G less it N 
external lines may be regarded as a passive electrical 
network, in which the internal lines are branches 
of resistance a, and the vertices, a = 1, 2, ... , v, 
are the nodes of the network.6 For all positive values 
of the a's, we define the symmetric v X v matrix B by 

B.~ '" O~ {
- L (aab",t l for a ~ b, 

- L Bac for a = b, 
c"a 

where L" stands for a summation over all the 
internal lines i ~ (a, b, w) which join the vertices a 
and b directly, and Bab = 0 when there are no such 
lines. The determinant of B vanishes and all its 
principal minors of order v-I are equal, their 
common value .1 being related2 to U(a) by 

U(a) = (IT ai).1. 
,-I 

(14) 

It is clear from (2) and (14) that .1 > 0 provided 
the a'S are all positive. 

We now treat an arbitrarily chosen vertex d of G 
asymmetrically, evaluating .1 as the determinant of 
the submatrix of B obtained by striking out the row 
and column corresponding to d. The cofactor of 
Bab in .1 is denoted by .1ab, and .1ab is defined to 
be zero when a or b equals d. The fundamental 
equations of electric circuit theory show that the 
power dissipated in the network when unit current 
enters at the node a and unit current leaves at 
the node b is 

P ab = .1-I(.1ao + .1bb - 2.1ab). (15) 

From (14) and (15) it is not hard to show that 

Pab = (II aab",)u(ab)(a)/U(a), (16) .. 
where u(ab) is the U function for the diagram G(Gb) 
obtained from G by removing all lines of the type 
(a, b, w) and identifying the vertices a and b. 

For any pair of external lines, {3 and 'Y, we define 
QP"f = Pb', where band c are the vertices at which 
(3 and 'Yare attached. In terms of these functions, 
Q(P, a) may be expressed in the form6 

Q(P, a) = - L PfJP'YQfJ'Y(a). (17) 
fJ<"f 

To prove the inequality, W\W, ~ W.W" for all 
connected diagrams G with four external lines, it is 
sufficient to consider only those diagrams in which 
the external lines 1, 2, 3, and 4 are attached to 
four different vertices, which we label 1, 2, 3, and 
4, respectively. For, when this is not the case, both 
sides of the inequality vanish identically. Com­
parison of (9) and (17) shows that 

tl + .I" = !(Q12 + QI3 - Q23), 

t4 + .I" = !(Q24 + Q34 - Q23), 

.I. - t .. = !(Q14 + Q23 - QI2 - Q34), (18) 

.I, - .I .. = !(Q14 + Q23 - QI3 - Q24), 

.II + .14 + t. + .I, = Q14' 

Our labeling convention makes Qh = PP'Y ({3, 'Y = 
1,2, 3, 4), and, taking d = 1, we see that, for positive 
a's, (15) gives 

.II + t" = .1-
1
.123 , 

.14 + .I .. = .1-1(.123 + .144 - .124 - .134), 

.I. - .Iv = .1-1(.134 - .123), 

.I, - .I .. = .1-1 (.124 - .123), 

Hence 

tl.l, - t.t. = (tl + .I..)(t4 + .I,,) 

(19) 

- (t. - .I .. )(t. - tu) - t .. (.11 + t, + t. + t,) 
(20) 

Now Jacobi's theorem shows that .123.144 - .1, • .1 .. 
equals .1 times the cofactor of the minor 

/

B23 B24/ 

B43 B44 

in .1, which is the same as the cofactor of B 23 in 
.144, Applying (15) to the diagram G(14), we see that 

, D. B. Fairlie, Proc. Cambridge Phil. Soc. 59, 157 (1963). .123.144 - .12 • .134 
& J. Mathews, Phys. Rev. 113, 381 (1959). 
• T. T. Wu, Phys. Rev. 123, 678 (1961). = .1.1,,!{Qg41 + Qg41 - Q~~'l} = .1.1".I!U). (21) 
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It also follows from (15) that 

(22) 

Substitution of (21) and (22) into (20) now gives 

(23) 

Multiplying both sides by U3 and using (7) and 
(16), we obtain 

W 1W4 - W.W, 

= (II a14",)[UW~14) - U(!4)Wu]. (24) .. 
Since (24) holds for all positive values of the a's 
and both sides of the equation are polynomials, it 
must hold identically for all values of the a's. 

To show that the right-hand side of (24) is non­
negative when the a's are all nonnegative, we expand 
Wu and W!14l by (8), observing that every inter­
mediate state S contributing to the sum for W .. also 
contributes to that for W!14). The converse is not 
in general true, as the example of Fig. 1 shows. 
Here the planar diagram G has no intermediate 
states in the u channel, but G(14) has one consisting 
of the internal lines, 1, 3, 5 and 7. Since all the 
terms in both summations are nonnegative, it is 
sufficient to show that, for all S contributing to 
the sum for W .. , 

UU(14) U' II . > U(14) U U II H, H. a, _ H. H. ai, 
iES iES 

, 

2. 

FIG. 1. A case where G(1') has an intermediate state in the 
u channel though G has none • 

where 

hi = {1,4\, h2 = {2,31. 

By (16) we see that this will hold provided P14(H1) ~ 
P 14(G). That this is indeed the case follows at once 
from the theorem that the power dissipated in a 
passive electrical network supplied by fixed external 
currents can only increase when the resistances of 
some of its branches are increased.G For Hl is ob­
tained from G by removing those internal lines i 
which belong to Sand H 2 , and this is equivalent 
to increasing to + <XI the corresponding resistances a,. 
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The Regge poles generated by ladder diagrams in a X </>3 theory are mixed with the moving cuts 
generated by a class of nonplanar graphs containing an internal ladder. Since the contribution from 
the cut-generating diagram is of order t-2ln mt, where t is the asymptotic variable, the t-2 behavior of 
the pure ladder graphs is examined and the trajectory of the Regge pole near t = -2 is calculated. 
The Mellin transform method is used throughout. The transformed amplitude corresponding to a 
single cut insertion is given by a product of the form pole-cut-pole, where it is only the second Regge 
trajectory that mixes with the cut. The cut itself depends on the leading trajectory. This result sub­
stantiates the predictions as to form of other work based on unitarity, but differs in that the cut and 
pole depend on different trajectory functions. Finally, multiple insertions of the cut diagrams are 
shown to generate an amplitude with two moving poles on each sheet of the cut. 

1. INTRODUCTION 

ANALYTICITY in the angular momentum has 
come to be recognized as a powerful tool in the 

analysis of high-energy (or momentum-transfer) be­
havior of scattering amplitudes; however, the original 
hypothesis that only a few Regge poles' in the crossed 
channel are necessary to describe the asymptotic 
behavior2 has had to be modified by the introduction 
of a more complicated set of singularities. In par­
ticular it seems that not only moving poles but also 
moving cuts must be considered. The presence of 
these cuts was deduced by Mandelstam3 from argu­
ments relating to the Gribov-Pomeranchuk phe­
nomenon 4 , and their existence in a class of perturba­
tion theory diagrams was explicitly exhibited by 
Polkinghorne5

• Recently Gribov, Pomeranchuk, and 
Ter-Martirosyan6 discussed a possible form for the 
discontinuity associated with these cuts, which they 
derived heuristically from unitarity. Their form leads 
to a suggested mixing of Regge poles and cuts near 
l = 1 which would determine the form of the dif­
fraction peak. The dominant contribution was as­
sociated with terms, pictorially represented by Fig. 1, 
which give as a typical contribution 

* The research reported in this document has been spon­
sored in part by the U. S. Air Force Office of Scientific Re­
search, OAR, under Grant AF EOAR 63-79 with the Euro­
pean Office of Aerospace Research, U. S. Air Force. 

t NATO Postdoctoral Fellow. 
1 T. Regge, Nuovo Cimento 14, 951 (1959); ibid. 18, 947 

(1960). 
2 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 

394 (1961). S. C. Frautschi, M. Gell-Mann, and F. Zacharia­
sen, Phys. Rev., 126, 2704 (1962). 

S S. Mandelstam, Nuovo Cimento 30, 1113, 1127, 1148 
(1963). 

4 V. N. Gribov and 1. Ya. Pomeranchuk, Phys. Letters 2, 
239 (1962). 

5 J. C. Polkinghorne, J. Math. Phys. 4, 1396 (1963). 
(Hereafter referred to as I.) 

& V. N. Gribov, 1. Ya. Pomeranchuk, K. A. Ter-Marti­
rosyan, to be published in Soviet Phys.-JETP. 

FIG. 1. Cut-generating 
contribution to a reg­
geon propagator. 

1 J dti dt~ p( t, ti, tD 1 ( ) 
~a(t) l - a(t;) - a(t~) + 1 l - a(t)' 1 

However, whether the form (1) can actually be 
obtained depends upon assumptions about the na­
ture of the Reggeon vertices in Fig. 1. It seems 
worthwhile to attempt to test these assumptions 
in the "laboratory" of Feynman integrals. 

As is well known, the simplest Feynman diagrams 
leading to a Regge-pole-like a symptotic behavior are 
the ladder diagrams7

• Regge cuts, on the other hand, 
have been shown to arise from a class of nonplanar 
diagrams containing an internal ladder5

• The mech­
anism for generating these cuts is discussed in I. 
In this paper we insert the cut generating diagrams 
into a general ladder graph. If a ladder is identified 
with the propagator of a reggeon, we are analyzing 
a model of two-particle scattering where the par­
ticles coalesce to form a reggeon, which, after 
propagating, decays into two particles. The reggeon 
Green's function contains not only a contribution 
from the bare reggeon, but also a term from an 
intermediate state of a reggeon and a particle. This 
class of Feynman diagrams corresponds then to the 
simplest case considered by Gribov et al.,6 except 
that our reggeon is in the region of l = -1, rather 
than l = +1. 

The contribution from a cut generating diagrams 
is known to be of order t- 2 In mt, where t is the as­
ymptotic variable5

• Thus, an analysis of ladder graphs 
containing such an insertion will require a knowledge 
of the t- 2 behavior of the external ladders. As far 

7 J. C. Polkinghorne, J. Math. Phys. 5, 431 (1964). 
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as the C 1 behavior is concerned, the insertion will 
represent a higher-order correction to the leading 
Regge pole near 1 = -1. Therefore, we must be able 
to extract the t-2 behavior of a simple ladder dia­
gram. This problem is interesting in its own right 
since it will involve contributions from a recurrence 
of the leading Regge pole, due to the fact that we use 
Mellin transforms rather than Legendre transforms, 
as well as contributions from a new pole that ap­
proaches 1 = - 2 in the weak coupling limit. The 
presence of a second pole is expected by analogy 
with potential theory, but its exact nature has not 
heretofore been examined. Once the problem of 
extracting the C 2 terms is solved for the ladder dia­
gram, the insertion of an internal reggeon proves 
comparatively simple. In fact, we can consider not 
only a single insertion which leads to a form analogous 
to (1), but also the sum of all possible insertions of 
the cut generating diagram; the result is analogous 
to that obtained from a sum of bubble diagrams and 
leads to an amplitude of a totally different form than 
that in (1). 

Of the several techniques developed for extract­
ing the asymptotic behavior of Feynman integrals, 
the most powerful has proved to be that utilizing 
the Mellin transform of the scattering amplitude7

-
9

• 

If a is the transform variable, a pole at ao in the 
transform corresponds to an asymptotic behavior 
of ta

,. In Sec. 2 we show that although the leading 
Regge pole contributes to a pole in a near a = -2, 
its effect can be separated from that of the second 
pole. In Sec. 3 we actually calculate the singularities 
of the ladder diagrams near a = -2, and show that 
the expected separation does indeed occur. In the 
next section we insert the reggeon-particle inter­
mediate state into the ladder and show that the 
result sums into the desired form. In the final sec­
tion we briefly discuss the iteration of the cut 
generating graphs as well as other possible insertions. 
The appendices contain some of the algebraic details 
needed in the body of the paper. 

2. MELLIN TRANSFORM OF A REGGE POLE 

The Mellin transform F(a) of a function f(t) IS 

defined to be 

F(a) = 1'" t-a-1f(t) dt. (2) 

Equation (1) may be inverted to give 

8 J. D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 
(1963). 

9 T. L. Trueman and T. Yao, Phys. Rev. 132,2741 (1963). 

(3) 

where the contour C is a line parallel to the im­
aginary a axis from -i <Xl to +i <Xl. For the purposes 
of this paper, the contour will be taken such that 
-1 < Re a < O. From (3) f(t) is seen to vanish as 
trBa

, or faster. The contour C may be shifted to the 
left until it meets any singularities of F(a). If F(a) 
has a pole at ao as well as a cut in a, then f(t) will 
go as 

f(t) = ~ 1 t a [ F(ao) + f pes') ds', ] da 
2m c a - ao(s) a - al(s ) 

= F(ao)t a ,(8) + f p(s')r"8') ds'. (4) 

Thus, terms in fCt) of order C 1
+. come from poles 

or branch points in F(a) near a = -1, and terms 
which fall off faster will be given by poles, or other 
singularities further to the left in the a plane. 

If the scattering amplitude f(s, t) has a Regge pole 
at 1 = lp(s) , then if lp < -!, the contribution of 
the pole to f(s, t) has the form1o 

f(s, t) 

(2lp + l)!3p(s)Q-lp-ll-l - 2tj(s - 4m2
)] 

11" cos 1I"lp 

(5) 

Q.(z) is the Legendre function of the second kind. 
Since the scattering amplitude has cuts for positive 
real t, we examine the limit t ~ - <Xl •

7 The Mellin 
transform of f(s, -r), where r = -t, is given byll 

(2lp + 1Wp(s) (s - 4m2)-a [r( _a)]2 
211" cos 1I"lp r( -lp - a) 

F(s, a) = 

X rea - lp) cos 1I"(a + lp). (6) 

Due to the factor rea - lp), F(s, a) will have a 
series of poles in a when a - lp(s) is equal to a 
negative integer; all other terms are regular for neg­
ative a and lp. In the weak coupling limit the leading 
Regge pole from the ladder diagrams has II (s) = 

-1 + 01(S), where 01(S) is small. We then find that 
if a ~ -1, -2, F(s, a) takes the form 

F(s, a) = -!3I(S)(S - 4m2)2j411"[a + 2 - OI(S»), (8) 
a--2 

10 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1962): 
11 Tables of Integral Transforms, edited by A. ErdelYl 

(McGraw-Hill Book Company, Inc., New York, 1954), Vol. 
II, pp. 316, 204. 
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while if lp -7 -2, and a -7 -2, we find 

F(s, a) = (32(S)(S - 4m2y /4?r[a + 2 - 02(S)], (9) 

Hence, near a = - 2, the two poles in the angular 
momentum plane contribute in the same way to 
F(s, a), except that their residues and trajectory 
functions will be different. For the ladder diagrams 
(31(S) and 01(S) are well known. Hence, a calculation 
of F(s, a) near a = -2 should produce two terms 
corresponding to (8) and (9) from which (32(S) and 
eMs) can easily be determined. 

3. BEHAVIOR AT a = -2 

The contribution to the total scattering amplitude 
of a ladder diagram with N + 1 rungs can be written 
in the form3 

where g = II~!~ Xi and QN and IlN are the same 
functions as defined in Ref. 7. The parameters Xi, 

Y., Zi are as labeled in Fig. 2. We have again replaced 
t by -T. Let us define the following quantities: 

IT, = Y. + Z;, 

Oi = XI + CTI + Xj+' - XUOi+l, (11) 

Then, as discussed in Appendix A, QN and IlN are 
given by 

(12) 

N N 

QN = m2 L: CTi + m2 2: XI 
,-I ;-2 

(13) 

FIG. 2. Typical ladder diagram. 

The representations of IlN and QN given in (12) and 
(13), while unfamiliar, prove to be essential for the 
following discussion. 

The Mellin transform of (10) is 

2( >,2 )N 
FN(S' a) = X 1&7r2 J'( -a) 

X 1'" dy· dz· dx· (Xl'" XN+l) " e-ON (14) 
o • •• Il~+" • 

FN(s, a) is well defined for -1 < Re a < 0, but 
contains a singularity as a -7 -1 due to the (XI) a 

factors. We apply the now standard trick of inte­
gration by parts to isolate this singularity7.G; in fact, 
since we are interested in (14) near a = -2, we 
integrate by parts twice to obtain 

F IS a) _ >,2(L)N J'( -a) 
N\ , - 1671"2 (a + I)N+l(a + 2)N+1 

X 1'" dx; (Xl' .. XN+1)«+2 

[ 

a2N+2 e-ON] 
X a 2 a2~' Xl ••• XN+l IlN 

(15) 

If we now set a = - 2, except in the pole terms, 
the XI integrations can be done. Thus, the most 
singular part of FN(s, a) at a = -2 is 

2( X2 )N 1 
FN(S, a) = >, 1&7r2 (a + 2)N+l 

(16) 

The point a = - 2 is unique in that the dependence 
on Il disappears. This results in considerable sim­
plification. 

To evaluate the integral in (16) we need to ex­
amine the detailed structure of QN' If there were 
no derivatives present, then QN would become QN(O) 
where 

(17) 

For the present problem all those terms of QN which 
are linear in each x. must be retained; all higher 
powers do not contribute. Thus, the coefficient of 
m2

, ffitN , becomes 

(18) 

since 81 = CTI in this limit. Consider next SN: 

(19) 



                                                                                                                                    

REGGE POLES IN FIELD-THEORY MODEL 1475 

If the second term of (19) is expanded by use of 
(11) and only terms linear in each Xi are kept, we 
find that 

+ XNXN-IOlNN-2 (1 _ XN+l _ XN-2 + XN-2XN+l) 

UNUN-I UN-2 UN UN-2 UNUN-2 

+ '" 

where OIN; = YNZj + ZNYj. The derivative with re­
spect to XN in (16) will generate a sum of terms of 
the form 

In as much as SN-l is independent of YN, ZN, all the 
terms in (20) that remain after XN is set equal to 
zero are symmetric in YN and ZN' Thus, regardless 
of what other properties tN,(YN, ZN) may have, it 
is surely symmetric in YN and ZN' Using this sym­
metry property, we can replace OINj by !UNUj. This 
is equivalent to making the same replacement in 
(20). When such a change is made in (20), a large 
number of cancellations occur between successive 
terms of the sum to leave 

<' _ <' + YNZN + (! _ YNZN) 
"N - "N-l XN 2 2 

UN UN 

_ ..! Xl ••• XN + ..! Xl ••• XN+l. 

2 Ul ••• UN 2 Ul ••• UN 
(22) 

Equation (22), together with the value of S" 

(23) 

determine SN completely. 

(24) 

The integral in (16), dN , may now be evaluated. 
From (17), (18), and (24) QN is seen to have the form 

(25) 

(26) 

The third term in (25) will contribute only when 
all N + 1 derivatives act upon it. Hence, fJ N is 
given by 

d
N 

= (4m~ - s) [A(s)t 

+ 1'" dy, dzie-ONCO)[ a
N

+
l 

e-ON ] , (27) 
o aXI ••• aXN+l .,-0 

A(s) is the trajectory function for the leading Regge 
pole. For 0 < s < 4m2

, its explicit functional form is 

1'" dydz [2 ~] 
A(s) = 0 Y + Z exp -m (y + z) + 1 + Z 

4 t -1 ( s )1 
= [s(4m2 

- s)]l an 4m2 
- s . (28) 

The remaining integral in (27), d~, is given in terms 
of a recursion formula by explicitly evaluating the 
derivative with respect to XN+l and commuting the 
remaining derivatives through the result. In this 
way we obtain 

d~ = -sD(s)d~_, + s(2C(s) - !A(s) 

+ (m 2 
- !s)D(s) + sE(s»d'J_" (29) 

where 

d'J = 1'" dy, dzie-ONCO) 

X [ aN e-ON'CZN+.-O)] 
ax, ••• aXN .,-0 (30) 

= /3(S)d~-1 - ([m2 
- s/2]/3(s) + sD(s)d II!." (31) 

The various functions of s in (29) and (31) are closely 
related to A(s), 

1'" dy dz yz [2 yz ] 
C(s) = 0 (y + Z)2 exp - m (y + z) + s y + Z 

B(s) = _ aA(~) 
am ' 

DCs) = aA(s) = ac(s) as - am2 , 

E(s) = ac(s). 
as (32) 
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Equations (29) and (31) form a coupled set of re­
currence relations for df, and d'fr. If they are written 
as a two-component column matrix, a solution ill 

matrix form is easily obtained. 

[:~l = a[:~~:l = aN-I[:~l (33) 

Ci [- [2/(4m
2 

- s)][1 + !(s - 2m2)A(s)] 0 j. 
[2/(4m2 - s)][m2 + A(s)] _m-2 

(34) 

The functions B(s), C(s), etc., have been explicitly 
evaluated in terms of A (s) i £1:, d:' are easily deter­
mined from the defining equations to be 

df = (iE + 2sC - !sA) = !s(s - 2m2)D(s) 

= [(s - 2m2)/(4m2 - s)]ll + t(s - 2m2)A], (35) 

df' = -sD. 

Equations (33), (34), and (35) constitute the solu­
tion to our problem. Since Cil2 turns out to be zero, 
we could solve for df, without reference to d'f,. How­
ever, it is d'fr we shall want in the next section, so 
we carry through the matrix method here. 

If F(s, a) is defined as the sum of all F N(S, a), 
N ~ 1, together with the Born term, it is given by 
the following expression: 

)..2m2 
F(s, a) = - a + 2 

)..2(4m
2 

- s) [ 1 1J 
- 2(a + 2) 1 - 'YA(s)/(a + 2) -

+ (a ~'Y 2l pC _ 'Ya~(a + 2»)(:~,), (36) 

where l' = )..2/1611'2 and P is a projection operator 
that selects the upper component of a column matrix. 
The first term on the right of (36) is the Mellin 
transform of the Born amplitude near a = -2. 
Inversion of the matrix in (36) is a simple problem 
in matrix algebra; it is especially simple since Ci12 = o. 

FIG. 3. Ladder diagram with a cut-generating insertion. 

when all terms in (36) are combined in an appropriate 
fashion, F(s, a) becomes 

)..2(S _ 4m2) 
F(s, a) = 2(a + 2 - 'YA(s» 

)..2(S _ 2m2) 

2{a + 2 - 21'[1 + !(s - 2m2)A(s)]/(4m2 - s)} 

(37) 

Equations (37) is to be compared with the sum of 
(8) and (9); it indeed has the desired form. The pa­
rameters of the first two Regge poles are determined 
to be 

Ms) = 

_211')..2(S - 2m2) 
(s - 4m2)2 

)..2 [1 + t(s - 2m2)A(s)] 
-811'2 4m2 - s 

(38) 

Notice that 82 (0) = 0, whether any significance 
should be attached to the precise form of 82 (s) is 
not known at this point. Trueman and Yao

g 
cal­

culated the a = - 2 contribution of the ladder dia­
grams at s = 0; as can be seen from (37), they 
evaluated only the recurrence of the leading pole. 

4. REGGE CUTS 

We next turn our attention to an analysis of 
ladder diagrams containing an internal ladder. Since 
we are looking for Regge-cut behavior, we are forced 
to consider a diagram such as that in Fig. 3, rather 
than the corresponding one with uncrossed lines5

• 

As shown in I, planar diagrams with internal ladders 
do not give cuts on the physical sheet. The amplitude 
corresponding to Fig. 3 may be written as in Eq. 
(10), but with different values for Q, g, and ~. The 
power of )..2/1611'2 is N + M + L + 5 corresponding 
to ladders of N + 1 and M + 1 rungs surrounding 
an internal ladder of L + 1 rungs. The appropriate 
Feynman parameters are labeled in Fig. 3. The 
coefficient of t is 

g = L(~'[X + Pd~'][Y + PI/~'] + {j)J, (39) 

where 

J = xf ... X~+l' 

and ~' is the same function of the parameters of the 
internal ladders as ~N in (10). The precise forms of 
Q, ~, {j, PI, and P 2 are discussed in Appendix A; 
it is worth noting that {j is proportional to WI •• ·WL+I. 
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As shown in I, the Regge cut is generated by that 
part of the integration hypercontour where X "'-' 
-Pd A' and Y '" -Pt/ A' and, in addition, g 
vanishes. Before evaluating this cut contribution, we 
must Mellin-transform the amplitude. Since g can be 
either positive or negative, the Mellin transform is 
not well defined for either positive or negative t. This 
is a reflection of the fact that the diagrams under 
consideration have a nonzero tu spectral function 
and, therefore, a right- and a left-hand cut in t. 
Accordingly we let t become iT and let T approach 
infinity; the amplitude for real t can be obtained 
by analytic continuation. For pure imaginary t the 
Mellin transform is well defined independent of the 
sign of g and is given by 

( 

,2 )N+M+L+5 1'" d (LJ)"-Q 
= :\2 1~7r2 (if"r( -0) 0 ai AH " e 

J,X·IY, 
X dX' dY' [A'X'Y' + g]", 

Xl Yl 
(41) 

where in going from (40) to (41) we have isolated the 
cut-generating part of the integral. The limits of 
the X' integration are such that Xl < 0 < X 2 , and 
similarly for Y'. The XI, Y' integral in (41) can be 
done by breaking it up into a sum of four terms such 
that the product X' Y' does not change sign within 
each region of integration. Then, if only those terms 
which become singular near ex = - 2 are retained, 
we have from Appendix B 

J,
x·

1
Y, 2 . 

[A'X'Y' + g]" = - ~ g,,+1 + R. 
x, Y, A 

(42) 

The remainder term R does not become singular 
at a = -2, while the g"+l term is just the factor 
we are looking for. Note that if g consists of a product 
of terms representing a number of cut-generating 
insertions, the Mellin-transform method allows the 
problem to be factorized and each insertion will 
contribute two delta functions and a ga+l factor. 

Upon combining (42) and (41), we find for the 
most singular part of F(s, a) 

The integrand of (43) is singular at a = -2 due 
to both g"+1 and (LJ) " . The delta functions may be 
used to carry out the a4, 84 integrations, 

(44) 
8(Y + PdA') 

( 
f3/fia + F) ) 1 

= 0 04 - 82 + C - F 82 + C - F' 

B, C, E, and F are functions of the internal ladder 
parameters and are given in Appendix A; it suffices to 
say that they vanish when all the Wi vanish. In ad­
dition, we know from Appendix A that, under the 
conditions (44), 0 is equal to f31f34WI ••• WL+IO'. 

Therefore, in order to extract the singular part of 
(43) near a = -2, it is necessary to integrate by 
parts twice over each Xi and x~ due to (LJ)", and 
once over f31, f34 and the Wi' The procedure is the 
same as in the previous section. After setting a = - 2 
in the resulting integrand, we do the Xi, X~, f3], (34, and 
Wi integrations. Q becomes a sum of three independ­
ent terms; one can be associated with the internal 
ladder and the other two with the external ladders. 
Thus, the integral for F(s, a) factorizes. 

( 
:\2 )N+M+L+I 1 

F(s, a) = 2riX2 167r2 (a + 2t+ M +L +. 

[l"'N+I 

X 0 IT dYi dzi 

[1'" L+l dl. dnie-QN"][ N --7 M ] 
X II " , I , , • 

o 0 AL Xi, Yo, Zi --7 Xi, Yi, Z, 

(45) 

We have set ai, aa = YN+l, ZN+l, 81, 83 = Y~+H 
Z~+l and a2, f32, 82, f3a = la, no, l L +1, nL+l' The reduc­
tion of Q is discussed in Appendix A and the explicit 
form of Q'L is given there; A'L is defined as 0' A'a28~ 
under the restrictions (44) and Wi = f31 = f3", = O. 
Qj,,+l is the same function encountered in the previous 
section, hence; the integrals in (45) referring to the 
external ladders are just fJ:.!+l and fJ~+l' where fJ'!. 
is the supplementary integral introduced in the 
previous section. We can evaluate them directly 
from (33), (34), and (35) by using a projection 
operator PI that retains only the lower components 
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of the two-component matrix. If 'Y = >..2/1611"2, the 
sum over N in (45) gives a factor of the form 

'Y i: (-'L-2)N 11:/+1 = p, A'Y (11!,) 
N-O ex + 1 - 'YG,J(ex + 2) 111 

= (ex + 2)M8)/[ex + 2 - 02(8)], (46) 

where 02(8) is the trajectory function of the second 
pole which appeared in (37). As can be seen from 
(25) and (26), setting XN+2 = 0 in QN+I removes 
those terms which would introduce a contribution 
from the leading pole into (45). 

The middle factor in (45) is identical to the 
integral appearing in Eq. (20) of I, after scaling 
all the parameters by (I" n.) = p(i., n,). Hence, 
using the results of I, we can perform the sum over 
L and obtain 

'Y2 i: (_'Y_)L[l'" IT dl, ~n; e-clL"] 
L-O ex + 2 0 .-0 AL 

where 

pes, s" 82) = [01(8)]2/>"(8,81,82)[82 - ml, 
and>.. = i + 8~ + 8; - 2881 - 2882 - 281S2; 01(8) 
is the trajectory function of the leading Regge pole. 

Upon putting the various factors together and 
taking into account the contributions from diagrams 
with only one external ladder, or no external ladders, 
we arrive at a final form for F(s, ex): 

F(s ex) == '1,,,' { 1 }2 J pCs, 81• 82) <lsI ds2 • 
, 411" ex + 2 - Ms) ex + 2 - 01 (Sl) 

(48) 

Equation (48) constitutes the final result. It shows 
a mixing of pole and cut near ex = - 2 of the form 
suggested by (1). However, the pole which mixes 
with the cut generated by the leading Regge tra­
jectory is not the leading pole itself, but rather the 
second Regge trajectory 02(8). If this model is 
relevant to the problem of combining cuts and poles 
near l = 1, it does not confirm the conjecture of 
Gribov, Pomeranchuk, and Ter-Martirosyan6

, for 
in order to determine the diffraction peak they need 
to combine a pomeranchukon-generated cut with 
pomeranchukon poles. The absence of a recurrence 
of the leading pole in (48) suggests that the leading 
singularity remains a pure pole. 

5. ITERATION OF THE CUT 

though such an amplitude gives the lowest-order 
cut contribution, there is no reason not to consider 
the effect of an arbitrary number of insertions. In 
fact, in a complete description of the amplitude, 
we must include all possible insertions of the cut­
generating graph, not to mention all other possible 
graphs. Besides, it is always interesting to sum up 
as large a class of graphs as possible. As will be seen, 
the problem is very similar to the summing of bubble 
graphs. From the work of the previous section and 
the results of Appendix B, we know that a diagram 
containing p cut insertions will factor into p integrals 
representing the insertion, p - 1 integrals for the 
internal ladders, and two integrals for the external 
ladders. The factorization property is crucially de­
pendent on the fact that in each cut diagram we 
set, in the notation of Fig. 3, PI, ex., P., o. equal to 
zero. Therefore, a diagram with p insertions each 
of which contains a ladder of L, + 1 rungs, p - 1 
internal ladders with M i rungs, and external ladders 
with N, and N2 rungs, will have an amplitude given 
by 

F ( ) = "\ 2( )'+"-1 (211'i)" (11 "11 ") 
p 8, ex /\ 'Y (ex + 2), N. N. 

x 01 61~i+l)(~ I1L.), (49) 

where r = N, + N2 + :E L. + :E M, + 3p. The 
integrals I1k~, 11k: were evaluated in the previous 
section; 61~'+1 is the same integral as l1~i+l except 
that the corresponding Q~'+1 has both XJ(,+2 and 
Xl equal to zero. This reflects the fact that the internal 
ladders are closed at both ends, while the external 
ladders are closed at only one end. The recursion 
relation determining 61~;+l is unchanged; there is 
an integral 61~'+1 differing from l1~i+l only in that 
XI = O. The difference occurs in 61: and 61:'. In terms 
of the functions defined in (12), .g: and 61f' are given 
by 

61i = -sD(s), 

61i' == B(8). 
(50) 

61:' is the integral for an internal ladder of zero 
rungs. The internal ladders sum up into the follow­
ing expression: 

~ C ~ 2f 61~+1 = p{ 1 -ex ~ 2 & J\~D, 
= B(s)(ex + 2//[ex + 2 - Ms)](ex + 2 + 'Ylm2

). 

(51) 

Equation (48) represents the result of inserting We have again used the explicit forms of B(8) and 
a single cut-generating diagram into a ladder. AI- D(s). Notice the surprising result that the internal 
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ladder contributes two poles, one of which is fixed. 
This is a basic difference between the l = -1 and 
l = -2 behavior. 

The sums over N 1, N 2 , and L, can be carried out 
as in the previous section. If n(s) is defined as 211"i 
times the integral in (47), F1'(s, a) becomes 

_ A
2,,21'-1 [ a + 2 J l' 

F1'(s, a) - (a + 2)2" a + 2 _ ~2(S) [(a + 2)n(s)] 

. X [ B(s)(a + 2)2 J1'-1 
~+2-~~~+2+~~ . ~ 

Upon summing (52) over p and adding in the second 
term of (37) we find 

F(s, a) 

A2 [-!(s - 2m2)(a + 2 + "lm2
) + "n(s)] 

[(a + 2 - ~2(s))(a + 2 + "lm2
) - ,,2B(s)n(s)] 

(53) 

In Eq. (53) the single Regge pole has been com­
pletely obliterated; in its place we have an amplitude 
that has a cut in a and two moving poles on each 
sheet of the cut. Thus, the insertion of higher-order 
diagrams into the second Regge trajectory splits 
it into two trajectories plus a moving cut; the only 
difference between the two poles is that the residue 
of one of them vanishes to lowest-order in A. 

A natural question at this point is whether the 
introduction of other graphs into the ladder diagrams 
will restore the single pole that would be expected 
on heuristic grounds. There are two kinds of possible 
insertions; those which close the ends of the ladder 
at a = -2, as the cut insertion does, and those 
which do not. All diagrams which factor will con­
tribute in exactly the same way as n(s) and thus 
will generate two poles at a = -2. Among such 
insertions are ones which, in the notation of Halli­
day12, are bounded by "two" lines at both ends. 
These graphs can be planar, so that the presence 
of two poles is not an effect of a tu spectral function. 
The far larger class of diagrams which do not allow 
factorization will be coupled to the ladder diagrams 
through an integral equation. Their effect will be 
very complicated, but it seems unlikely that they 
can combine to restore the single pole. Undoubtedly 
the nonfactorizing insertions generate a whole new 
class of singularities in a. 

In conclusion then the mixing of poles and cuts 
near a = -2 is, in lowest order, very similar in 
form to (1); however, the cut generated by the 
leading Regge trajectory mixes only with the second 

12 1. G. Halliday, Nuovo Cimento 30, 177 (1963). 

Regge pole. In addition, an analysis of higher-order 
iterations of the cut-generating graphs indicate that 
there are two moving poles which mix with the cut, 
where only one would be expected. The appearance 
of the second pole is an essential difference between 
the behavior of ladder diagrams at l = -1 and at 
l = -2. 
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APPENDIX A 

For appropriate values of the external masses 
and momenta, any Feynman diagram can be ex­
pressed in the form 

1'" da: e-M 

f(s, t) = 0 f:..2 . (AI) 

The complete set of integration variables is denoted 
by a,. In terms of the conventional C and D func­
tions, f:.. is just C expressed in terms of the new set 
of variables and M is DIC.7 A ladder diagram of 
N + 1 rungs, with the external particles off the mass 
shell, and carrying a total 4-momentum Q, has for 
M N the following expression: 

MN = m2AN + BNk~ + CNk~ + DNQ2 

- 2ENQ·k1 - 2FNQ·k2 - 2GNk1·k2, (A2) 

where k1 and Q - k1 are the incoming momenta 
and k2 and Q - k2 are the outgoing. An Euclidean 
metric with an imaginary fourth component has 
been used in writing (A2). The functions A, B, C, 
etc., are given by 

N N+1 
AN = E CT, + Ex" 

1 ,-1 

N N 2() 
Ez, - EI/J,z , 
,-1 1 0, 

(A3) 

± l/Ji(Z)(X1 ••• x,) 
,-1 01 • •• 0, ' 

FN = I/JN(Z)XN+dON, 

GN = Xl ... XN+lI01 ... ON. 

The variables in (A3) correspond to the labeling 
in Fig. 2, and CT" 0;, I/J, were defined in (11). On the 
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mass shell, k~ = lei = _m2
, Q2 2Q·k1 = 2Q·k2 = 

-s, and k1 ,k2 = t/2 - m2
• We then find that 

mzN AN - BN - eN + 2GN, (A4) 
SN = DN - EN - FN, 

where a few algebraic manipulations are necessary 
to put SN in the form used in (12). This representation 
of M for a ladder diagram is generated by successively 
completing the square and integrating out the N 
internal momenta of the graph. 

The procedure used to derive (A2) and (A3) may 
be used to evaluate Fig. 3. It is simpler, however, to 
insert (A2) for each of the three ladders, with the 
appropriate mass-shell constraints, and consider the 
diagram to have only five independent internal 
momenta. The final result of carrying out all the 
integrations is extremely cumbersome. The coeffi­
cient of t can be written relatively concisely in the 
form 

u/ a = LJ(a'(X + P2/ a')(Y + P1/ at) + {j). (AS) 

x, Y, L, J , and a' are defined in Sec. 3, and a is 
just the (J function for the whole graph. The other 
factors in (AS) are 

{j "'" W1 ••• WL+l[XN+2,64(83 + (4) 

X;"+2,61(a4 + ,62) + x;"+".xN+2(D + 1') 

- Ea-tx;"+2 - FQ4XN+2 - Ga404], (A6) 

Pz/ A' = Ba4 - EXN+2' PI/a' = (J04 - FX;"+2, 

where XN+2 = <4 + ,61 and X'M+2 = 04 + Ill' B, (J, 

D, E, F are functions of the internal parameters 
such that as all the Wi vanish, P l and P2 also vanish. 
The remaining part of M, referred to as Q in the 
paper, is given by the following expression: 

Q = I N + J M + SS' M2mzl. (A7) 

J Nand J M depend only on the external ladders. 

I N = m2(AN - BN) 

- S(DN - EN) == QN(XN+l = 0). 

In the limit of interest in this paper (,61 = a4 = ,64 = 
04 = Wi = 0) the other terms in (A7) can be evaluated 
with relative ease. The result is that 

L 

mzt = E (l, + no) + (aJj + ,62) 
';""'1 

+ :r.. ~ _ ~ Xl' • , XM+l A..' 2 ( ... ,2 f ! ) 

H - (/3 Of - (J' I 'f'M+l, M+l 1 ••• 8M +1 
(A9) 

where 

and 

H == l' + ,6~2 + ,630
2 + ± lin. . 

all + ,62 02 + ,63 .-1 l. + 11, 

We have dropped all tenns in ml' and ~ which 
are quadratic in x. or x~. Hence, if ai, ,6;, 0, are 
relabeled as indicated below (45), we can combine 
the various terms in (A7) to write 

Q = m2(AN+l - ,6N+l) - s(DN +1 - EN+1) 

+ m2(A~+l - ,6~+1) - s(D~+1 - E~+l) 

= QN+l(XN+l = 0) + QM+l(X1-+2 = 0) + Q'/.. 

(A10) 

Finally we look at A'l which is defined to be g' a' azoz 
with all the appropriate variables vanishing. From 
(A6), when E = F = G = 0, a .. = (,61,62)/a2, and 
04 = (,63,64)/02, all is given by 

L 

At' = g'A'a20z = IT (l. + n.)(az + ,62)(02 + ,6a)H ,-1 
L+l 

= H IT (li + ni)' (All) 
;: .. 0 

APPENDIX B 

In the course of evaluating the amplitude cor· 
responding to Fig. 3, we needed the integral 

I = [' [0 [axy + b)", (Bl) 

where Xl, Yl < 0 and X2, Y2 > O. In particular, we 
were interested in the dominant terms as a tended 
to - 2 and b to zero. Consider first the following 
integral: 

l' = [0 [0 [axy + b]" 

I
, 1 

= 1m 
..... 0 a(a + 1) 

X 1.0"'''' dz [Ct + b)" t (~)" - b"+lJ. 
• ,,~O \Z + b 
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l' = 1 {(aX2Y2 + b)a+2 In (aX2Y2 + b) 
a(a + 1) b ax2Y2 

+ (ax2Y2 + bt+1(a + 2)F(ax2Y~ + b) 

is then positive. To obtain the value of the integral 
for X2 > 0 and Y2 < 0, we analytically continue 
(B3) in Y2 to obtain 

I = [ba+1/(a + 1)aJ[In (ax2 !Y2!/b) 

(B4) + ba
+

1 
In (

aX'bY2
) 

- Ha + 2)b a
+

I
7r

2 + O[(a + 2)2]}, 

where 

where we have arbitrarily set In (-1) = -i7r. The 
(B2) integral in (Bl) can now be evaluated: 

F(x) = ~ (n ~ 1?' 

Only the terms proportional to ba
+

1 are singular 
near a = -2. 

l' = ba+l [In (aX2Y2) _ ( + 2) 7r
2

] 

a(a + 1) b a b' 
(B3) 

Equation (B3) is valid for X2 and Y2 both positive, 
or both negative, since the argument of the logarithm 

I = [{' [' + {' [' - {' [' - {' [' ] 

(B5) 

This is the result used in (42). Clearly the same kind 
of manipulation leads to 

IT If dx; dy,[a,x,y, + b,J
a 

.-1 
(B6) 
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This paper is devoted to the study of some relativistic methods in statistical mechanics and their 
applications to the construction of a covariant theory of Brownian movement. In this work we deal 
only ~th times which are long compared with the relaxation time {J-l. As a consequence of this 
COVarIant theory we derive relativistic Wiener integrals. 

INTRODUCTION 

THE probable appearance in the future of plasmas 
with very high temperatures necessary to obtain 

thermonuclear fusion has increased the need for a 
systematic study of relativistic plasmas (perhaps 
already existing in white dwarfs). Though actual 
plasmas now encountered in physics are not very 
hot, it is necessary to treat them with a covariant 
method if one deals with radiation phenomena for 
which relativistic effects are very importane (more 
than quantal ones) at least in a large domain of 
frequencies. Accordingly, it is necessary to have a 
covariant theory; because of the qualitative change 
introduced by the special theory of relativity, we 
cannot take into account relativistic effects by 
merely adding corrective terms in classical expres­
sions. Furthermore there is no systematic study of 
relativistic statistical mechanics and we hope to 
derive methods appropriate to such a study. More 
particularly we hope to give a general formalism 
for relativistic irreversible processes based on meth­
ods used in the theory of Brownian motion (Onsager 
relations) .2 

The first section of this paper is devoted to some 
relativistic concepts: description of the evolution of 
the observable quantities, probabilities and rela­
tivistic mean values. Section 2 deals with the basis 
of the method used. Starting from a "maximum 
entropy principle," we derive the transition density 
by assuming that the first two moments are given. 
This entropy is discussed here. We find at least three 
kinds of possible entropies which lead to the same 
results. In Sec. 3, the transition density is derived 
and next specified by means of a covariant diffusion 

• Postal a~dress: ~aboratoire de Physique Theorique et 
Hautes EnergIes, BAtlment 211, Faculte des Sciences Orsay 
(Seine-et-Oise), France. ' 

1 J. L. Delcroix, in La theorie des gaz neutres et ionises 
des Houches SU!lllller School (Dunod & Cie, Paris, 1959): 

S P. Mazur, m Termodinamica dei processi irrever8~"bili 
Varenna Summer School, 1959 (N. Zanichelli, Bologna, 1960/ 

equation (derived from the assumption of the mar­
kovian character of the stochastic process associated 
to the covariant Brownian motion). In Sec. 4, we 
define the probabilistic axioms of a covariant Brown­
ian motion and as a consequence, we derive the 
covariant Wiener integral. 

Finally, as direct applications of the theory here­
after presented, we think that we are able to treat 
several problems of radiation and this will be done 
in another paper. 

The classical study3 of Brownian motion involved 
(a) the derivation of the conditional density of prob­
ability of a particle within a random environment, 
(b) the derivation of the diffusion equation with 
or without an external field of force, (c) the study 
of the approach to local equilibrium by means of 
the Langevin and the Fokker-Planck equations, (d) 
the derivation of the Wiener integral (defined by 
a measure on the set of continuous trajectories), 
and last, (e) applications of the methods used to 
analogous problems. Our program is to derive a 
covariant theory of the above points. In this paper 
we treat only points (a), (b), and (d), the other 
points being treated in our next paper. Of course 
we do not claim that our theory is the only one: 
it is merely a possibility. 

Throughout this paper we treat only the case of 
local equilibrium, i.e., the case where the stochastic 
process associated with the covariant Brownian mo­
tion is stationary. The general case-the approach 
to local equilibrium-is treated in the second part 
of this paper. 

NOTATION 

(8): tensorial product 
8(x): heaviside step function 
:m;n: n-dimensional pseudo-Euclidian space with 

the metric: + - - -. 
as. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 
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r+ (xo): future null cone, the origin of which is at 
x~ [r+ == r+(O)] 

-<: order 
1\ : operation of an exterior algebra 

R+: positive real numbers 
1.4: characteristic function of the set A. 
01): superficial measure + 1 on the surface 1; 

!lap.lI: matrix, the elements of which are a". 
g!',: metric tensor: goo = 1, g .. = -1; gP' = 0 

for ~ ~ 11 

0(4) (Xl'): o(xo) <8> O(Xl) <8> 0(X2) <8> o(xs) 
A B: (where A and B are sets) represents the 

sets of all mappings of B into A. 
c: speed of light taken as unity throughout 

this paper. 
£(E, E): designates the set of all linear applications 

of the vectorial space E onto itself. 

I. SOME RELATIVISTIC CONCEPTS 

Before we treat Brownian motion in a covariant 
manner, we need some relativistic methods here­
after presented. Some ideas given in this section 
are explained in another work.4 In order to deal 
with problems of statistical mechanics we ask for 
a covariant notion of evolution, covariant prob­
abilistic methods and covariant mean values. 

Location in Minkowski Space-Time 

In all that follows, we shall consider only the 
flat space-time of 8pecial relativity: :m4

• Let us first 
introduce the notion of u-partition. 

Definition 1. We shall call u-partition { S} , a 
family of spacelike three-dimensional manifolds S 
constituting a partition of :m4 and satisfying the 
following axioms: 

S1: Each manifold S belonging to the u-partition is 
defined by a function S(XoXIX2Xa) ==def S(x.) and 
an invariant parameter 8 by the equation: S(x.) = 8. 

The parameter 8 will be called the pseudotime rela­
tive to the u-partition {st. In what follows we shall 
call S. the surface corresponding to the value 8 

of the pseudotime. 

S2: if 81 ~ 82 then S .. n s .. = </I, 

S3: :m4 
= US" 

• €R 

or the weakened form of Sa, 

S~: r+ = V S. where r+ is the future null cone, 
.€R+ 

Sf: S. is indefinitely differentiable, 

• R. Hakim (to be published). 

Ss: S. has no singularities: i.e. Yx. E S. one has 
o!,S(x.) ~ 0, 

S6: S. is orientable. 

Let us now explain the reasons for which we 
introduce this definition. In relativity there exists 
no privileged notion of simultaneity so that the 
physical space at a given "instant" is no longer a 
3-plane t = const, but rather an arbitrary 8pacelike 
3-surface: S C :m4

• By taking an arbitrary spacelike 
3-surface we give a sense to physical space but the 
word Hinstant" is not clear because of the arbi­
trariness of the surface. Let us try to give a precise 
meaning to the word Uinstant". To do this we should 
give a fully ordered set structure to the set of all 
spacelike 3-manifolds of Minkowski space-time. This 
is hardly possible and accordingly we introduce a 
partial order, and only on a subset (the subset of 
all spacelike 3-surfaces satisfying the regularity 
axioms S4, S5, S6): because of SI, IS} is ordered by 

S .. -< S.. if and only if 81 < 82' 

Then, the value taken by a pseudo-instant 8 de­
termines a unique cut of space-time, on which one 
can evaluate global (Le. nonlocal) quantities, for 
example relative to a given fluid. For instance, we 
have 

ips == ip~"'(8) = 1 cp~'''(Xp) dS 
s (zp)., 

with dS = nAdS\ where n). is the normal unit to 
Sand dS). is the symmetric differential form with 
vectorial values: 

and 

dS). = :1 E).l'vp dx!' 1\ dx' 1\ dxP 

1
+ 1 if (Xp.1Ip) is an even permutation 

of (0 123), 
Ex",p = --I if (Xp.1Ip) is an odd permutation 

of (0 123), 
o otherwise. 

We shall point out that when we take another u­

partition { 1;}, there is a priori no reason why 
(;>1) = ips, when 8 = u, if we admit that we have 
fixed an origin and a suitable scale for 8 and u . 

As a consequence of these definitions, we see that 
the temporal evolution of a global quantity is per­
fectly defined in a covariant manner when a u-parti­
tion is given. But this method, which permits the 
determination of the evolution of a physical system 
(a fluid or a statistical collection of physical ob­
jects ... ), depends greatly on the u-partition used. 
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Time 

Titnelike curve 

=-~~~:::=====::"-----"""space 

FIG. 1. A way to number a u-partition. The num~er as­
sociated with the surface ~, is given by the proper time of 
the above timelike line at the intersecting point (the origin 
is chosen as indicated on the figures). 

However, since there is no privileged notion of 
simultaneity (all the IT-partitions are equivalent from 
the point of view of the description of physical 
space) there must not exist a privileged notion of 
temporal evolution (as a temporal counterpart of the 
aforementioned equivalence of all IT-partitions); i.e., 
all pseudotimes are equivalent (we assume implicitly 
that we have chosen a suitable scale for s and IT, 
i.e., we have numbered in the same way the two 
IT-partitions IS} and {~}): 0:1:EI:1:)(IT) has the same 
form as 0SEIS,(S) and the difference between the 
two IT-partitions used {~} and {S} is reflected only 
in the initial conditions. This means that when the 
global quantity 0 satisfies a given equation, the 
precise form of the solutions of this equation will 
depend on the initial conditions through the element 
number zero of an arbitrary IT-partition. For in­
stance, if the global quantity 0(s) satisfies the 
differential equation 

(d/ds)0(s) + f30(s) = 0, 

we will have 0(s) = 0(0) exp [-ps]; but as we have 
already said, there is a priori no reason why 

with ~o {~}, 
So E IS}, 

and consequently the initial conditions reflect the 
difference between the various possible IT-partitions. 

If we define some method for constructing a 
pseudotime s relative to a given IT-partition, all the 
pseudotimes constructed by the same method are 

equivalent for the description of the evolution of 
global quantities. For example, a possible way to 
number a given IT-partion can be determined by 
using a timelike line with a fixed arbitrary origin 
on it. Then we attribute to a surface of the IT-parti­
tion a number defined by the proper time of the 
intersecting point (see Fig. 1). We can thereby in­
troduce the concept of statistical time (which appears 
as an independent parameter) defined as a kind of 
class of equivalence of the pseudotimes correspond­
ing to a given way of numeration. The word "statis­
tical" is used to designate this extra parameter 
because of its use in the description of statistical 
collections: according to its definition, it is not a 
mean value. 

In practice, we take a well-determined IT-partition, 
chosen to suit the problem under study and therefore 
a given notion of simultaneity. Generally it may 
be of interest to define a IT-partition by a particular 
property of the physical system. For example, in a 
relativistic fluid, a useful IT-partition is determined 
by the surfaces orthogonal to the stream lines. Un­
fortunately, these surfaces do not always exist (e.g., 
when one considers the curly motion of a relativistic 
fluid). 

For many people a Lorentz observer is consti­
tuted by a IT-partition, for others a Lorentz observer 
is a congruence of timelike curves (Cattaneo5

). For 
us, a Lorentz observer implies (a) a system of coor­
dinates; (b) a notion of simultaneity, and a change 
of Lorentz observer implies two things: (a) a change 
of coordinates; (b) a change of the notion of simul­
taneity. 

We must point out that to every Lorentz observer 
0, is attached a IT-partition; and when we change 
the Lorentz observer (i.e., when we have 0' = LO), 
we have IS}' = LIS} = {LS} (since the Lorentz 
group is a continuous group, it transforms a IT­
partition into another IT-partition), where L is a 
Lorentz transformation. 

If the system has a privileged point (which is the 
case when we deal with a diffusion phenomenon 
where the origin is a privileged point; this is also 
the case when we must use a transition density) 
there exists a very useful IT-partition, geometrically 
and analytically invariant, which consists of the 
family of hyperboloids X(r) relative to this point 
taken as the origin: 

{ 

~ 2 

(x( r) }: x x~ = r 

r2> O. 

5 C. Cattaneo, Seminar given at Institut Henri Poincare, 
Paris, 1961. 
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The orthogonal trajectories of such a o--partition 
are the straight lines beginning at the origin. {JC(r)} 
is useful6 in our problem where the origin plays a 
special role (the Brownian particles being initially 
concentrated at the origin). The principlal advantage 
of such a o--partition is the following: to all density­
like quantities (i.e., local quantities) having a de­
termined variance correspond global (integral) quan­
tities having the same variance. The disadvantages 
of {JC(T)} are 

(a) JC(T) does not reduce to {OJ when T ~ O. 
(b) JC(T) is not compact but only locally compact. 
(c) The measure of JC(T) is infinite. 
(d) JC(T) is not invariant under the translations 

of :m4
• 

Local and Global Quantities 

A relativistic fluid is often defined as a congruence 
of timelike curves directed towards the positive xo. 
This definition covers two types of elements char­
acterizing the fluid: the first is rather kinematic 
(the field of four speeds), while the second is rather 
dynamic (the invariant world density). These quan­
tities are local quantities in contrast to the observable 
macroscopic quantities which are, especially in sta­
tistical mechanics, global quantities. Global quantities 
are generally integral quantities, and consequently 
are relative either to a domain of :m\ or (in the cases 
with which we deal) to a spacelike cut of Minkowski 
space. Examples of global quantities are: the electric 
charge of a fluid at a given pseudotime (i.e., on a 
spacelike 3-surface S E {S}), the number of par­
ticles at the same pseudotime, the center of gravity 
X~(S), etc. ... . For an arbitrary fluid scheme/ 
a global quantity has not, in general, a well-defined 
relativistic variance8

•
9

; in order to explain this point, 
let us take the case of a global scalar. One has, 
in a given fluid, 

ip(S) = is ~(x.)l dS~ with S E {S}, (1) 

where r is the four-current density of the fluid. 
If we perform a homogeneous Lorentz transforma­
tion L on our physical system, i.e., when we change 
the Lorentz observer, then (where we have assumed 
that we have given a correct definition of LS) 
S ~ LS and generally 

6 R. Hakim, Institut du Radium Report IRPO-T 64-01. 
7 A. Lichnerowicz, Les theories relativistes de l'electromag­

netisme et de la gravitation (Masson et Cie, Paris, 1955). 
8 P. G. Bergmann, in Handbuch der Physik edited by S. 

Fliigge (Springer-Verlag, Berlin, 1962), Vol. 4, p. 135. 
9 F. Halbwachs, Theorie relativiste des fiuides a spin, 

(Gauthier-Villars, Paris, 1960). 

ip(LS) ~ ip(S) 

since ip(LS) and ip(S) are integral quantities relative 
to different cuts of space-time. Thus the left-hand 
side of (1) is generally not a scalar, but appears 
to be a numerical function defined on the Lorentz 
group. However, there exists a particular kind of 
local quantities <,O(x.) for which we have ip(LS) = ip(S) ; 
they are the quantities r-conservative, i.e., such that 

(2) 

These quantities obviously form a vectorial space. 
Expression (2) is equivalent to the following: 
(%S)ip(S) = 0, where a/oS is a functional de­
rivative. 

There is another case where ip(LS) = <,O(S); this 
is the case of the o--partition defined by the family 
of hyperboloids JC(T), since LJC(T) = JC(T). 

From a general point of view, global quantities 
appear as functions defined on the Lorentz group, 
the values of which are tensorial. In fact, if one 
contracts a local quantity with a constant dual 
tensor, one obtains a local scalar from which arises 
a global scalar after an integration over an S E {S}. 
Then from this global scalar we obtain a global 
tensor, i.e., a function on the Lorentz group taking 
its values in a certain tensorial space. 

From a probabilistic point of view, and con­
sequently from the point of view of relativistic 
statistical mechanics, this circumstance is unfor­
tunate, because all the observable macroscopic quan­
tities which are mean values of local quantities, , 
have a well defined variance. Therefore we must 
find, whenever possible, a way of obtaining mean 
values having the same variance as the associated 
density. 

Probability and Mean Values 

It is easy to show that a probabilistic fluid scheme 
(i.e., a so-called fluid of probability defined by a 
conserved four-current) is not well adapted to a 
covariant description of various probabilistic no­
tions: entropy, stationarity, markovian processes 
etc. ... The simplest way to describe the prob­
abilistic notions in Minkowski space-time is to fix 
a o--partition {~l, once and for all, to call pr, the 
probability density on a given element of the 0-­

partition used, and finally to transcribe into this 
scheme all the properties we need for our theory. 
In doing this, mean values must be defined in such 
a way that they have the same variance as the 
associated densities and reduce, in the classical limit, 
to the usual mean values. We now try to give a 
solution to this problem. 
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First, let E be the tensorial algebra generated by 
rnt'. Let us call E(rnt') a set of applications of mt4 

into E, these applications being of physical interest: 
i.e., E(mt') is the set of densities on rnt4 having a 
certain tensorial variance. Let us call E(L++) the 
set of all continuous applications of L ++ (homoge­
neous orthochronous proper Lorentz group) onto E. 
A star designates the algebraic dual of a given 
vectorial space. 

Now let I L be the application of ECmt4
) onto 

E(L ++) defined as follows: 

V'P E E(rnt4
) and Vx E E*; 

let us form the local scalar quantity (Vx E E* and 
such that [x, 'Pl R or C); let us form the local 
scalar quantity a = [x, 'P}, where the brackets 
denote a "scalar product," which is constituted by 
the contraction of X and 'P. Next, let us form the 
global scalar: 

[X, ~(L)] = a = 1 ap dS, with a E E(U+); 
LS 

then I L is the operation defined by ~(L) = I L'P. 

We can now search for the desired averaged opera­
tion. If we know how to write a linear operation K 
such that one has the following (commutative) 
diagram: 

and if we restrict ourselves to the elements of E(rnt4
) 

such that 

K 0 hCIP) E E C E(L++), 

then our goal is reached for these elements. Because of 
the hereafter-assumed linearity of K, these elements 
form a vectorial subspace of E(mt4

), namely tzK , so 
that one has the following (commutative) diagram: 

'= I ~KCE (JlI1,4j L • E(LH) 

~,1 .. ) 
where { } is the average operation, one wants to 
find 

( ) = K 0 h. 

Obviously this is not a general method since we 
define an average only for a certain subspace of 
E(mt4

). However this is more general than, for in­
stance, integrability (Ref. 8) conditions. A general-

ization of the above method can be obtained if we 
are able to find a family of K" i E I being given, 
such that 

Vi, i E I with i:F i; we have tzKI (') tzKi = E. 

Then, an average operation may be defined on 

by taking 

K = E KiP(tzK .), 
iEI 

where P(AK.) is the projection on tzKI' This method 
will be developed in a later paper. Let us now return 
to our operation K: one can see that K possesses 
all the properties of a Reynolds's operator10

•
11

: 

R1 : KisaIinearoperation:K E£[E(L++), EeL ++)]. 
R2 :V/ E E(L++): f 2:: 0, then Kf 2:: O. 
Ra: K must be continuous [in a sense, to be made 

more precise, according to the topological 
structure of E(L ++)}. 

R.: K const = const. 
R5: vf, g E E(L ++), one has: K(f·Kg) = Kf·Kg. 

Accordingly, one can verify that such an operation 
K may be given by 

Kf = lim { 1 1 feL') dp.(L')} , 
B(L)-oL++ mesB(L) B(L)cL++ 

(3) 

where L, L' belong to L + +, p.(L') is the Haar measure 
on the homogeneous, orthochronous proper Lorentz 
group L++ and B(L) is a compact subset of L++ 
containing the element L in a consistent manner. 
Of course, this is not the only possible operation. 
Nevertheless it appears to be natural since it con­
stitutes also a kind of mean value. In formula (3), 

lim { ... } 

must be understood as follows: the characteristic 
function of B(L) converges simply towards 1 on 
L++(h ~ IL++)' 

As we have already said, the operation K 
in (3) only gives us an average function on the 
Lorentz group, instead of a constant. However for 
an important class of functions on the Lorentz group, 
Kf = const and we shall restrict ourselves to this 
class. In the other cases, we shall say that f has 
no K average. 

Now, let us give an explicit form of Kf, dealing 
10 K. De Feriet in Theone des jonctwns aUatoires (MlIBSon 

et Cie., Paris, 1953). 
11 B. Brainerd, J. Math. Anal. & Appl. 5, 347 (1962). 
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with the simpler case of the one-parameter Lorentz 
group operating in the space mr2

• In this case, 
we have 

L(O) = iCOsh 0 sinh 0\ and dp,(O') = dO' 

sinh 0 cosh 0 B(O) = [0 - T, 0 + T] 

with tanh 0 = -v. Consequently we have 

1 18
+. Kf = lim - f(O')dO'; 

..... '" 2T 8-. 
(4) 

One can easily verify that a class of functions having 
a constant average consists of the locally integrable 
functions bounded above or below by a constant, 
and such that the limit (4) exists. In the case of 
the space mr', where the Lorentz group is a six­
parameter group, a class of functions with a constant 
average is not built in such a simple way. 

Let us now prove that our covariant mean value 
( ) = K 0 I L reduces to the classical one at t~e 
nonrelativistic limit. It is sufficient to show this 
consistency property for the scalars. At the classical 
limit 

I Ltp -+ f tpp d3x 
, -oonat 

since all notions of simultaneity (i.e., all spacelike 
surfaces) reduce to the one of instantaneity (i.e., 
t = const). Conseqnently ip is no longer a function 
on the Galilei group; ip is a constant. The operation 
K reduces to a similar operation on the functions 
defined on the Galilei group, and satisfies again the 
given axioms Rl '" Ro. Then 

Kip -+ ip. Q.E.D. 

n. BASIC METHOD 

Outline of the Method 

Though a relativistic theory of Brownian motion 
ean be built from several hypotheses, classieal meth­
ods are unfortunately very difficult to set up in a 
covariant way, so that we shall start with an 
analogy, shown hereafter, which will help us to 
imagine a method more appropriate to the covariant 
case. 

First, let us consider a nonrelativistic uniform 
gas of particles of mass m, without interactions 
between them, at thermodynamic equilibrium and 
consider (for a Brownian particle) only the case 
of interest in this paper: t » {:1-1 ({:1 is the friction 
coefficient). The conditional momentum density of 
a Brownian particle within the gas, is 

tp(Po, 0 I p, t) = (4?rmkT)-t exp [-p2/2mkT] , (5) 

while the conditional position density is 

p(xo I x, t) = (4'II-Dt)-1 exp [-x2/2Dt]; (6) 

if we compare expressions (5) and (6) one can see 
that (6) follows from (5) by the use of the sub­
stitution 

p -+ (kT/D)x (7a) 

to which 

m -+ (kT/D)t (7b) 

must be added. 
The substitution (7a) can be justified by the use 
of the Langevin equation (with t» (:1-I). 

The analogy between expressions (5) and (6) is 
not accidental. It is due to the fact that the phenom­
ena of molecular impacts are the basis leading to 
expressions (5) and (6). Indeed, (5) and (6) are the 
limit laws for the addition of a great number of 
independant random variables [(5) is the limit law 
for the addition of momenta while (6) is the limit 
law for the addition of x]. 

As a consequence (5) and (6) may be found by the 
same statistical methods. 

If we now use the same statistical methods as 
those used in deriving the Maxwell-Boltzmann law, 
in order to look for the conditional spatial distribu­
tion of the Brownian particles we should proceed 
as follows. 

First we have a kind of equilibrium, to be specified 
later, which gives the condition 

oS = 0, 

where S is the entropy (also to be specified later). 
Next, we write that the first two moments of the 
distribution are given and therefore independant of 
the distribution to be found: 

by analogy with 

o(x) = 0, 

o(x Q9x) = 0 

0(P) = 0, 

o(p Q9 p/2m) = o. 
It is clear that the main problem is to give a meaning 
to the condition oS = 0 and in particular we must 
answer the question: what is entropy? 

Entropy 

Because of the aforementioned analogy, we start 
with an entropy derived from the most probable 
state of our system. Let us consider a system of 
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N independent Brownian particles and study their 
repartition when we place them in a certain number 
of cells. To do this, let us prove the following 
proposition: 

Proposition 1. Let p(X., s) be the transition density 
from the originl2 (xp = 0, s = 0) to points of a 
surface :3(s), element of a given cr-partition. Then 
we have to maximize an expression of the form 

S = -X 1 p(x.,s) log p(x.,s) d~(8), X> O. (8) 
x (I) 

Proof. To obtain our "cells," let us take a partition 
of ~(8). Let A be this partition. It satisfies 

~(8) = V IT;~ 
i).EI). 

i ;& j, 

o < sup [d(cri~)] ~ A, 

where d(ITi~) is the diameter of ITi~' 

To prevent the possibility of a ~(8), the measure 
of which is infinite, let us introduce a family of 
measures on ~(8) having the properties indicated 
hereafter. Let P..,.I be these measures (a R+). 
They are such that: Lp.", • = p.", I with L L ++ 

(Where L + + is the orthochronous proper homoge­
neous Lorentz group); for any positive s and for 
any finite a, p. .... (~(s)l < a:>; for any ~(x.) > 0 and 
p.".,-integrable: f ~(x.) dp. .. ,. > OJ For any s, P. .. ,I 
converges uniformly towards 1x (0), the characteristic 
function of ~(s). 

For fixed s, these measures are finite, positive, 
Lorentz invariant (invariant under a change of 
coordinates but not in the mathematical sense 
(Ref. 13): only their forms are invariant) and con­
verge towards 1, when a ~ co. The existence of 
such a family is obvious {e.g., let us take 

p. .. ,,(B) = r exp [-txjLa -1] d~(s) 
JBcr+ 

with ~I' timelike}. Since we fix s [i.e., we take a 
definite "physical space" ~(s)] we can omit the index 
s of p."" and write p. .. ,. == p.". 

Now, if we throw a Brownian particle on the 
surface ~(s), the probability that this particle will 
fall in the iA th cell is 

12 It is possible to take the origin as the starting point 
because of the invariance of the theory for translations, which 
is due to the fact that the gas is uniform. 

13 P. Methea, Commun. Math. Helv. 28, 225 (1954). 

and in general the probability of having n l particles 
in the first cell, n2 in the second one, ... niA in 
the i>.th cell, is given by the well-known formula14 

(p~ti' 
P ( ... n· ... ) = NI II -'-'-a t). • , ' 

i}..EI). n i ).. 

Introducing now a "Boltzmann entropy", 

S"A = X 10gP.,(··· niX ••• ), X> 0, 

and taking into account Stirling's formula and 
n i , » 1, we find (after dropping irrelevant constants 
which play no role in the maximization) 

Then, assuming that the measures p.., have a density 
m,,(x.) ( which is possible as indicated in the pre­
ceding example), and writing the same symbol for 
the Lebesgue measure of the set IT i, and for the 
set IT., we have 

with ~. E cr i, 

and 

Assuming now the integrability of the function 
p log (p/m,,) and "taking the limit" A ~ 0, we obtain 

S" = limS.,,>.. = -x f p(x.,s) logP(x
c
" 8» d~(s). 

>.~o X(8) ma x. 

Then, making the parameter a increase indefinitely, 
and taking the most probable state of our collection, 
we have the expected result. Q.E.D. 

In order to follow closely the classical derivation 
of expression (8), we have derived an entropy arising 
from the usual notion of the "most probable state" 
of a statistical system (Here the fictitious system 
of a large number of independent Brownian par­
ticles). In fact, this is not the only possibility. It 
would also have been correct to derive expression 
(8) from the consideration of a fictitious gas of 
Brownian particles at local equilibrium. IS Another 
way to obtain the maximization of (8) consists in 
admitting the Jaynes' "maximum entropy prin-

l~ L. Schwartz, Theorie des distributions (Hermann & Cie., 
PariS, 1951). 

15 S. R. De Groot and P. Mazur, Non-Equilibrium Thermo­
dynamics (North Holland Publishing Company, Amsterdam 
1960). ' 
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ciple,,16 the basis of which comes from considerations 
of information theory. Unfortunately the basis of 
this principle is not very convincing, though its 
rigorous justification certainly arises from informa­
tion theory. 

All that we have done up to now is to suggest 
strongly the maximization of (8). Perhaps a correct 
derivation could be found from considering the 
entropy properties of the limit law for the addition 
of a large number of independant random variables. 
Unfortunately this has not yet been done. 

m. TRANSITION DENSITY 

Let us now apply the results of the preceding 
sections. The first two moments are given by 

X~(s) = <x~) = K f x~p(x", s) d~(s), (9) 
L:!:nr+ 

X~'(s) = <x~x') = K J x~x' p(x", s) d~(s), (10) 
L2:nr+ 

while the normalization condition of p(x", s) is 

1 = (I) = K f p(x., s) d~(s) 
L:!:nr+ 

(11) 

and the invariant entropy 

S = (log p(x" , s» 

= K J p(x", s) log p(x", s) d~(s), 
L2:nr+ 

(12) 

where K is the operation defined in Sec. 1 and L 
a Lorentz transformation. In Eqs. (9), (10), (11), 
and (12) we have restricted the domain of integration 
to the part of the surface 1: (or L1:) within 1'+ 

because of the requirement of causality which implies 
that x~ should be timelike. Note that we have 
implicitly assumed that the Brownian particle is 
initially (i.e., at "time" s = 0) at the origin. Now 
we have a variational problem to solve: we must 
maximize expression (12) taking into account condi­
tions (9), (10), and (11). To do this let us introduce 
fifteen Langrange multipliers: C, 'T}'~, and 'T}m. We 
have now the variation equation 

oS + C 0(1) + 'T}'~ o(x~) + 'T}'~' o<x~x.) = 0, 

which reduces to 

of ICp(x., s) - p(X., s) log p(x., s) 
2:(I)nr+ 

16 E. T. Jaynes, Phys. Rev. 106, 620 (1957). 

or 

- log p op = O. (13) 

From (13), we find the expression of p(x., s), 

p(X., s) = R(s) exp [-rtx~ - ,rx~x.] 

and x~ E ~(s) n r+. (14) 

It is clear that the fifteen constants R(s), 7J~, 7J~', 

obtained from the fifteen Lagrange multipliers C, 
7J'~, 'T}'~', are to be considered as functions of s. 

Before solving the principal problem concerning 
expression (14), which is to express the fifteen un­
known constants R(s), 7J~, 7J~', we shall give the 
expression for the transition density. 'Ve remember 
that expression (14) is simply 

p(x., s) == p(O, 0 I x., s) == p(x, - 0, s - 0). 

Consequently, the general expression for the transi­
tion density will be 

p(x~, So I x:, SI) = 1 r +(Xo ,)R(sl - so) 

X exp [-7J~(x! - x~) 

- 7J~'(x! - x~)(x~ - x~)]· 02: ('.-1.)' (14)' 

In the above formula, the factor 1r+ simply expresses 
the causality condition. 

If the first two moments of expression (14) are 
given, it is in principle possible to determine the 
unknown constants by solving the system 

X~(s) = K( r xPR(s) 
):!:(.) 

X exp [-7J"X" - 'I/"~X"x~] d~(s») , 

X~'(s) = K(f x~x'R(s) 
:!: (0) 

X exp [-'l/"X" - 'I/"~X"x~] d~(S») , 

to which must be joined the normalization condition 
(11). K is the operation defined in Sec.!. 

The only thing which can be said a priori is that 
the matrix 117J~'11 is Hermitian and must be positive­
definite so that the normalization condition makes 
sense for timelike or null vectors 7J~·x~x. > 0; 
x~x~ ;::: O. 

The Covariant-Difiusion Equation 

We shall derive the covariant diffusion in the 
usual way. In order to have the customary hy­
potheses for the stochastic nature of the Brownian 
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movement, we first define what is a covariant 
Markov process, since this is the commonly ad­
mitted assumption. A stochastic process, the transi­
tion density of which satisfies the following Chap­
man-Kolmogorov property: 

t(X1' 81 I X2, 82) 

= 1 t(X1' 81 I Xa, 8a)t(Xa, 8a I X2, 82) d~(8a) (15) 
1;( .. ) 

and 

81 < 8a < 82, 

is Markovian by construction. It can be called a 
covariant Markovian process. It must be noted that 
the transition density t(X181 I X282) is a superfical 
density on the surface 2:(82). Unfortunately, defini­
tion (15) is not well suited to the description of 
stationarity 

t(X1, 81 I X2, 82) = t(X1' 0 I X2, 82 - 81), 

because of the following direct consequence of this 
equality which implies that 

2:(82) = ~(82 - 81)' 

Therefore only the u-partitions, which can be used 
to describe stationarity, are constructed from one 
arbitrarity spacelike surface by taking the surfaces 
obtained by transformation of the given one by a 
one-parameter group of timelike translations. Though 
this last requirement seems to restrict the arbitrar­
iness of the possible u-partitions, in contrast to the 
spirit of the special theory of relativity, we shall 
limit ourselves to such a u-partition in order to 
derive the covariant diffusion equation; however, 
in the following section, this equation will be shown 
to be valid whatever the u-partition. 

Now, we need other statistical assumptions. Let 
.68 denote an interval of pseudotime long enough 
for a particle to reach a local equilibrium state 
(8 » (3-1 '" ~S = 0) but still short enough for the 
net displacement ~xp to be small, i.e., (~xP) « 1; 
(~xP~x') « 1. The Chapman-Kolmogorov equation 
then reads (because of the invariance of p under 
the translations of ml4). 

p(X",8 + .68) = p(X",8) * p(xP, .68) 

= J p(x" - ~xP, 8)p(~X", ~8) d (~~). 
Since ~xP is assumed to be small, one can expand 
p(x" - ~x", 8) in powers of ~xp. We have 

p(X",8 + .68) = J d(~~){p(x", 8) - ~x"iJ"p(x" 8) 

+ !~x"~x'iJ",p(x", 8) + ... }p(~x" 8) 

which can be written 

p(X",8 + .68) - p(X", 8) 

= - ~x"iJ"p + !~x"~x'iJ",p, (16) 

where the bar stands for the operation h defined 
in Sec. I, and where we have assumed that higher 
terms behave like O(.6i). Then taking the K-trans­
formation of the two sides of Eq. (16), we have 

p(X",8 + .68) - p(XP, 8) 

= -(~xP)iJpp + !(~x"~x·)iJ",p. (17) 

Assuming now that 

lim (~x") = a" 
A.-O .68 

and 

1. (~x" ~x') '" 
lID = a ; 

A.-O .68 

then, after taking the limit .68 ~ 0, (17) reads 

iJp/iJ8 = -a"iJI'P + !a"'iJ!'.p for x!' ¢ 0 (18) 

and 8 ¢ 0 

or 

iJp/iJ8 + a!'iJ!,p - !a!"iJl"p = ~(4) Q9 ~(.) (18') 

which is valid everywhere. These assumptions are 
more restrictive than the usual ones (see, e.g., 
Ref. 17) but are more clear from a physical point 
of view. 

This is the covariant generalization of the usual 
diffusion equation. From its definition, al' appears 
to be the mean velocity of our collection of Brownian 
particles (or of our fictitious fluid), while aI" may 
be called the inverse-diffusion tensor. The physically 
interesting solution of the diffusion equation (18') 
must satisfy 

lim p(x" 8) = ~(4)' 

Here we shall not derive the diffusion equation for 
a Brownian particle in a fluid submitted to arbitrary 
forces; this will be done in the second part of this 
paper. The fact that p(x" 8) involves five variables 
instead of four, seems at first sight to be most 
surprising. However this is no longer the case when 
we remember that these five variables are not 
independant: they are interrelated by the equation 

~(xo, Xl, X2, xa) = 8. 

17 J. L. Doob, Stochastic Proces8es (John Wiley & Sons, 
Inc., New York, 1962). 



                                                                                                                                    

RELATIVISTIC BROWNIAN MOTION 1. 1491 

Note also that in order to obtain our diffusion equa­
tion, we have made two hypotheses concerning 
(l5xl') and (l5xl'l5x'). We remark that the simplest 
form for (l5xl') and (l5xl'l5x') is 

(19) 

(l5xl'l5x') == (xl'x')o = crs. (20) 

Equation (19) describes the motion of the center 
of gravity of our fictitious gas, and therefore can 
be considered as exact, while Eq. (20) could con­
stitute a covariant generalization of the Einstein 
relation; in fact we shall see that the correct general­
ization of the Einstein relation isis 

(xl'x')o - (xl')o(x')o = ors. 

Calculation of the Coefficients 1/" and 1/'" 

Let us now introduce expression (14)' where we 
have made So = 0, Xo = 0, into Eq. (18) and write 
that (14), satisfies (18) identically. Consequently 
we obtain a relation involving 1/1', 1/1", a!', a!", and 
xl'. Since this relation must hold for all values of 
xl', the coefficients of xl' and xl'x' must vanish 
identically. There remains a constant term which 
must be equal to zero. This constant term is of no 
interest here since it gives only the coefficient R(s) 
which depends on the surface 1:(s). The coefficients 
of xl' and xl'·x' vanishing, we find the two relations 

ill' = -2(1/I"a, + apu1/u1/I'P), (21) 

ill" = -2apu1/I'P1/'u, (22) 

where the dot denotes the pseudotime derivative. 
Setting 

and 

N = 111/1"11, 

A = Ilal"ll, 

1/1' = n, a!' = a, 

Eqs. (21) and (22) then read 

1i + 2(Na + NAn) = 0, 

N+2NAN = O. 

(23) 

(24) 

First let us solve (24). Its solution is obviously 
N = !A -is-lor 1/1" = !(A -it's-i. The simplest 
solution of (23), consistent with the nonrelativistic 
limit is such that 1i = O. Consequently, n = -A -la 
or 1/'" = - (A -1)1" a,. Now the transition density 
reads 

18 R. Hakim, "A covariant Theory of Relativistic Brownian 
Motion 11." Orsay, TH. 68. 

p(x~so I X~Sl) = l r +<z •• )R(sl - so) exp [(A-1/"al'x. 

- !(A -l/'XI'X.(Sl - sot1
] I5 Z < .. - •• l , (25) 

where 

IV. AXIOMATICS OF THE RELATMSTIC 
BROWNIAN MOTION AND THEIR APPLICATION 

TO THE COVARIANT WIENER INTEGRAL 

As a first application to the previous section, we 
shall derive a covariant Wiener integral. With this 
covariant Wiener integral we hope to treat different 
problems of radiation of a relativistic plasma at 
local equilibrium or problems of binary collisions, 
etc. The need for a covariant Wiener integral can 
be explained as follows. Since many physical quan­
tities are functionals of the trajectories, we need 
an integral over the set of trajectories in order to 
obtain measurable quantities (which are mean val­
ues). (An example of such a physical quantity 
depending on the trajectory is the following: the 
electromagnetic field of a relativistic particle. For 
instance, it is interesting to compute the mean 
radiation emitted by a relativistic test particle with 
the help of a covariant Wiener integral.) These 
trajectories must be continuous in order to be phys­
ically interesting. The main difference between the 
covariant Wiener integral and the classical one is 
that the former is an integral over the set of timelike 
curves. Note also that this set of trajectories can 
either be constructed from infinite curves or from 
finite parts of them [i.e., trajectories beginning at 
some point (e.g., the origin) and finishing at some 
other (namely: x:)]. However, before defining such 
a covariant Wiener integral, we must specify the 
axiomatics of a covariant Brownian motion and more 
particularly its associated stochastic process. 

The Stochastic Process Associated with the 
Relativistic Brownian Motion 

From the expression (25) for the transition density, 
it is easy to derive a covariant Wiener measure 
(and hence a covariant Wiener integral) with the 
use of well-known techniques. 1u

-
22 However this 

derivation is entirely formal and cannot be rigorously 
justified (essentially because of the presence in ex-

19 P. Courrege, Le processus stochastique du mouvement 
brownien (Centre de Documentation Universitaire, Paris, 
1963). 

20 M. Kac, Probability and Related Topics in Physical 
Sciences (Interscience Publishers, London, 1959). 

21 E. W. Montroll, "On the statistical Mechanics of Trans­
port Processes" in Termadinamica dei Processi irreversibili 
Varenna Summer School, 1959 (N. Zanichelli, Bologna, 1960). 

u 1. M. Guelfand and A. M. Yaglom, J. Math. Phys. 1, 
48 (1960). 
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pression (25) of an arbitrary surface ~(s). Therefore 
we should proceed on the basis of the following 
remarks. 

Let us first consider the expression (25) for the 
transition density. It has the form 

and therefore can be considered as the projection 
of F on the arbitrary 3-surface ~. Then it seems 
that the main role is played by F rather than by 
the density itself. This remark suggests strongly the 
association of a stochastic process with the covariant 
Brownian motion, which has the following properties: 
(1) its transition density is F(xi - x~, Sl - so) 
which is normalized in r+ (x~); (2) the values of 
this stochastic process are in ~4 rather than on 
the ~'s (3) its trajectories are timelike. At this point 
we must note that F(x. s) describes an "unphysical" 
stochastic process. In fact, we show in Part II that 
F is as "physical" as p. The difference between p 

and F is that the former has been derived on the 
basis of an assumption chosen so as to follow closely 
the usual definition of physical space, while the 
latter appear to be more specifically relativistic.4

•
18 

F(x., s) will arise in a natural manner from a co­
variant generalization of the Langevin equation. 

Before giving the axioms of a covariant Brownian 
motion, let us give the definition of a Lorentz­
Gaussian stochastic process. 

Definition 2. A stochastic process is said to be 
Lorentz-Gaussian if all its joint distributions are 
(a) invariant under a change of coordinates defined 
by a Lorentz transformation; (b) derived from the 
maximization of an entropy (in the sense of in­
formation theory) once the first two moments are 
given. The entropy is given by 

S = - X f Flog F d4x, 

where X is an arbitrary positive constant. 

Let us now give the axioms of a covariant Brown­
ian motion. 

Definition 3. A stochastic process X~ defined on 
R+ (or R) and the values of which are in ~4 is 
said to be a covariant Brownian motion if the three 
following properties are satisfied. 

(B1)-X: is a process with independant incre­
ments. This means that for any finite sequence 
So < Sl < S2 < ... < Sp, with s, E R+, the random 
variables X:H , - X:., (0 ~ k < p) are independent. 

(B2)-The stochastic process X~ is Lorentz-Gaus­
sian (see Def. 2). 

(Ba)-The trajectories of X: satisfy: (Ba1) they 
are almost certainly timelike; (B32) they are almost 
certainly continuous. 

Axiom B1 arises from the fact that our gas is 
uniform, which implies the stationarity of the pro­
cess and the invariance of the transition density 
under the translations of ~4. B1 also implies that 
the process is Markovian. As a consequence of Bh 
the transition density can be written 

F(xis1 I X~S2) = F(O, 0 I x~ - xi, S2 - Sl) 

== F(x~ - xi, S2 - Sl). 

This equality implies that the Chapman-Kolmogorov 
property, expressing analytically the Markovian 
character of the process is given by 

F(XM Sl + S2) = F(XM Sl) * F(x~, S2). (26) 

Equation (26) is always defined since, as we shall 
see below, F(xp , s) belongs to the convolution 
algebra :D~+. 

Axiom B2 is only the covariant generalization of 
the usual assumption of the Gaussian character of 
the Brownian movement. The Lorentz-Gaussian 
character of the stochastic process used with the 
Chapman-Kolmogorov property (26) yields the dif­
fusion equation 

la/as + apap - ta~·a~.}F = O. (27) 

Axiom B32 is only the requirement that the 
stochastic process describe in fact a physical process: 
a Brownian particle can, in principle, be followed 
continuously; its trajectory is continuous. 

Axiom B31 is an axiom of causality. Its interest 
comes from the following obvious proposition. 

Proposition 2. A covariant Markovian process X: 
has its trajectories almost certainly timelike if and 
only if its transition density F(xis1Ix~s2) is zero out 
of the null cone r+ (xi). 

Proof. (1) if F(xisdx~s2) is zero out ofthe null cone 
r+ (x';), there cannot exist transitions such that 
x~ - xi be spacelike. Consequently the trajectories 
of the process are almost certainly timelike; (2) if 
the Markovian process has timelike trajectories, 
there are no possible transitions such that x~ - xi 
be spacelike and consequently F must be zero out 
of the null cone r+ (xi). Q.E.D. 

From a physical point of view, the expression 
"almost certainly" occuring in Axiom Ba is sufficient. 
In fact, it is known23 that there exists an equivalent 

23 P. Courrege (private communication). 
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stochastic process which has its trajectories exactly 
timelike and continuous. As a consequence of the 
causality condition, F is normalized in 1'+ (xi): 

f F(x; - xi, S2 - SI) d4x = 1. 
r+(Zl") 

An Explicit Expression for F 

Maximizing the entropy, 

S = -X f F(x''', s) log F(xP
, s) d4x, 

r+ 

and taking into account the fact that the first two 
moments are given [Note that, because of the defi­
nition of F (which no longer involves an arbitrary 
surface through the factor 52:), mean values now 
have a good variance.4

], we obtain 

[using the same techniques as in Sec. 3: we first introduce 
fifteen Lagrange multipliers; next we solve our variational 
problem; finally introducing the derived expression into the 
diffusion equation (27), we find expression (28)] 

F(x", s) = Ir+R(s) exp [a"x" - !(A -1)"'XpX,S-I] , (28) 

which is, as expected, expression (25) (modulo its 
domain of definition). 

We therefore have18 

(xl') = aI's 

In expression (28) we see that F(x·, s) is different 
from zero on the frontier of 1'+, and is zero outside 
1'+. Consequently F verifies equation (27) only in 
the null cone 1'+, and not everywhere. From a 
physical point of view, this is sufficient since a 
Brownian particle cannot reach the null cone (if it 
is massive). From a mathematical point of view, 
this difficulty gives rise to interesting problems23 

not yet solved. 
The diffusion equation (27) can now allow us to 

obtain the expression for the factor R(s). Introducing 
expression (28) in Eq. (27) and letting the coeffi­
cients of x" and x"x' vanish, we obtain the preceding 
expressions (see Sec. 3) for the coefficients r/, and 
7)"'; there remains a constant term which must also 
be identically equal to zero 

R(s) + R(s) {!a"'[(A -1)~(A -1)~apap] + 2s-1} = o. 
This first-order linear homogeneous equation can be 
rewritten as 

R(s) + R(s) {! (a, A -la) +2s-1} = 0, 

the solution of which is 

R(s) = Ros-2 exp [-! (a, A -la) s], 

where Ro is a constant of integration to be de­
termined by the normalization condition. It is found 
(Ref. 24) that 

Ro = (2'lIr2(det A)-1/2. 

Therefore, we can write the transition density as 

F(X';SI I X;S2) = Ros-2 exp {- (A -1)"'[2(S2 - SI>r1 

X [x! - x! - ais2 - SI)] 

X [x~ - x! - a.(s2 - SI)] HI r +). (29) 

This last expression is the same as the classical one 
except that it involves: (a) one more dimension 
(4 instead of 3); (b) a causality factor (Ir+); (c) a 
quadratic form which is not positive and definite 
everywhere. 

The Covariant Wiener Integral 

Once we have defined the stochastic process asso­
ciated with the covariant Brownian motion, we can 
derive correctly the covariant Wiener measure 
(which allows the construction of a canonical co­
variant Brownian motionI9

). 

Let us first recall the following lemma. 

Lemma. For any sequence 0 ::; SI ::; S2 ::; ... ::; Sn 
and for each measurable and bounded numerical 
function on m7;4n, 

(x';, x; ... x~) ~ f(x'; ... x~), 

the expectation value of f(X'; ... X~) is given by 

E(f) = J ... J f(x'; ... x~) 

X II F(x':; - X':-l' S. - S.-I) d4x, , 
and this property is equivalent to the Markovian 
character of the covariant Brownian motion X:. 

Proof. see Ref. 19, p.40. 

This lemma allows us to construct a probability 7f'u 
on the space (m7;4) u where U = {SI' S2, ... , Sn} 
and 0 ::; SI < S2 < ... < Sn, for the random variable: 

w ~ [X:(W)].EU 

(w belongs to the sample space). We have 

and this is true for any finite n. 

It is now easy to show with the help of the Chap­
man-Kolmogorov property, that the {7f'u} con-

24 F. Lurcat & P. Mazur, Nuovo Cimento 31, 140 (1964). 
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stitutes a projective system26 of Radon probabil­
ities.2s Then, according to the 

Kolmogorov Theorem: Let (0;, ::J;),EI be a family 
of locally compact topological spaces, and let F. = 
o-(::J;) be the Borelian field of the topological space 
0;. Let <P be the set of all finite parts of 1. Then, 
if for all J E <P, 11' J is a Radon probability on the 
locally compact product space, II;EJ 0; = OJ, then 
the projective system {11' J I JEi/} has a unique pro­
jective limit 11'. 

Proof. See Ref. 17, p. 21. 

The projective system {11'ul has a unique projec­
tive limit 11'. 11' is defined on the set of all continuous 
mappings of R+ into mr\ namely cmr4)1l+ which is 
nothing but the trajectories of the stochastic process 
X=. Because of proposition 2, and because of the 
support of F, we are sure that 11' is a measure on the 
continuous timelike trajectories and that the set of 
all other traject.ories (discontinuous or spaceIike) has 
a null measure. 

We have therefore obtained a covariant Wiener 
measure. Next, because of a well-known theorem 
(see, e.g., Ref. 26, p.46), it is easy to construct a 
covariant Wiener integral from the covariant Wiener 
measure. 

Connected Questions 

(1) Let us now give an explicit expression for d1rrr, 
and hence for d1r, 

d11'u = II F(x~ - X~-lI S. - S;-I) d4x. 
i-1 

X exp [- (A -1)1" {(x! - X;-I) - a~(s; - S;-I)} 

X {(X! - X;-I) - a.(s, - S/-1)}] d4x;. 

Introducing now the reduced variables X~=x~-a~si' 
we have 

Now taking the limit n -7 cx>, d1ru becomes 

16 N. Bourbaki, Theorie de8 Ensemble8 (Hermann &; Cie, 
Paris 1963), Chap. 3. 

II P. Courrege, Theone de la me8ure (Centre de Documenta.­
tion Universitaire, Paris, 1963). 

d11' = lim d1ru 

= exp [-!(A -1)1" l' dXe.dX. dB] :i:I d[x"(s)] 
o ds ds 0 

where we implicitly limit ourselves to the parts of 
the trajectories corresponding to (0, s). We must 
note that the expression 

~ f (A -1Y"X~X, ds 

is never the relativistic action of the particle, because 
the tensor A!" is never the metric tensor (in order 
that the normalization integral have a sense). This 
will be shown for the explicit form of A'" (see 
Part II). 

(2) Let G(xl'(s)] be a functional of the trajectory 
of a Brownian particle, and assume that it is 1r­

integrable. The mean value of G will be21 

G = J G[x~(s)] d1r = :~ J ... J G(xi .•• x:) d1ru 

where we have "discretized" the functional G19
, 

As an example, let us compute the mean value of 
the functional 

which is interesting relative to sources problems 
or to a generalization of the Bloch equation.19 Once 
"discretized", this functional is 

G[x~(s)] = lim exp {-LE ~V(XZ)][SI - so]} 
n-.IX) Ie n 

= lim II exp [_~V(X:)(SI - so)J 
A_OI) Ie n 

so that the calculation of 

reduces to the calculation of the fundamental solu­
tion of a partial differential equation [the limits of 
the integral symbolically designate the fact we inte­
grate G over the set of the trajectories beginning 
at xl'(so) and finishing at XI'(SI)}.20-22 This solution 
must satisfy 

lim G(X:'SI I x~o) = ow(xi - x~). -.-... 
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Using the same methods as in the nonrelativistic 
case,20-22 it is found that this partial differential 
equation is 

{O/OSl + olo" - ia"'o", - ~V(x~)}G(XiSl I x~so) 
= 8(4)(xi - x~) Q9 8(Sl - so). (30) 

As it is expected, Eq. (30) becomes the diffusion 
equation (27) when ~ = O. Let us note that we have 
implicitly assumed that V is bounded and measurable 
(for a V not bounded, see the procedure used in 
Ref. 20). 

V. CONCLUSION 

In this paper we have obtained several results 
which we should now discuss. First, we have de­
fined a notion of evolution in statistical relativistic 
mechanics, introducing the concept of IT-partition 
of space-time which clarifies the idea of statistical 
time needed to locate a global quantity. This statis­
tical time is an independent parameter and it is fully 
used only in Sec. 4, where we consider the associated 
stochastic process of the Brownian particle. Next 
we have given a method permitting the calculation 
of the covariant mean values of local quantities on 
an element of a given IT-partition. We must point 
out that such a mean value does not always exist, 
so that we need, at least in the case of a conditional 
expectation value, an invariant IT-partition: because 
of axiom R4, a global quantity has always a covariant 
mean value. This is a reason for using the IT-parti­
tion X(T).6 

Another remark must be made. It might be sur­
prising at first sight that our covariant mean value 
plays a very small role in the derivation of the 
transition density of the Brownian particle, but when 
we look more closely at the derivation of this transi­
tion density, we see that only local quantities are 
involved, and therefore there is no need for a co-

variant mean value at this point (except in a rigorous 
derivation). 

It must also be pointed out that all we have 
said about Lorentz transformation, Lorentz ob­
servers, Lorentz frame, simultaneity, etc. would 
require a special discussion. This will be done in a 
further paper. 

As we have already said, the method used (i.e. 
the maximization of an entropy) is only strongly 
suggested by the classical results and cannot be 
considered as proved. However, we believe that the 
transition density obtained is correct, as it could 
be shown by studying the addition of independent 
random variables, or from a covariant Langevin 
equation. 

The fact that F(x" s) is more fundamental than 
F(x., s)· 8s clarifies the meaning of the diffusion 
equation (27). F(x" s) must be regarded as a density 
in m/:4 normalized in the future null cone, which 
at first sight has no sense by itself, except when 
projected on an element of a IT-partition. We shall 
return to this point in Part II. 

The second part of this paper (Ref. 18) will be 
devoted to the approach to equilibrium: Focker­
Planck's equations, Langevin's equations, Brownian 
particle in a force field. This second part will clarify 
the results here obtained. 
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Formal solutions of the BBGKY equations of classical statistical mechanics are obtained in the 
form of integral equations. This form makes it particularly straightforward to obtain the density 
corrections to the functional equation for /2 and to the evolution equation for ft. The physical impli­
cations of the derivation, in particular the validity of Bogoliubov's functional hypothesis, are dis­
cussed in detail. 

INTRODUCTION 

DECENT years have seen a very large number of 
.l \.treatments of the problem of the approach to 
equilibrium in dense classical gases starting from 
the Liouville equation.1- 9 These methods are being 
shown to agree in their resultslO so that considerable 
faith may now be placed in them. Unfortunately, 
the successful theories have been sufficiently com­
plicated that their physical implications have not 
been obvious. Their use in numerical problems (like 
computing density corrections to Chapman-Enskog 
transport coefficientsll) has been limited. 

This paper resulted from a search for a way to 

* Supported in part by National Science Foundation 
Grant NSF-G20725. Portions of this paper were presented 
at the Midwest Conference on Theoretical Physics, Ames, 
Iowa, June, 1964. 
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treat the problem with minimum mathematical com­
plication and maximum physical insight. 

In Part I, the low-order BBGKY equations, viewed 
as simple inhomogeneous equations, are formally 
solved by expressing them as integral equations. 
The advantages arising from integral equation solu­
tions in statistical mechanics have been stressed 
previously by Montroll.12 Also, a density expansion 
is introduced and discussed. The resulting first den­
sity corrections to the functional equation for t2 
and to the Boltzmann equation are derived in Part 
II. In Part III these results are compared with the 
results of other theories. The physical implications 
of the theory are discussed in Part IV. 

I. SOLUTION OF THE BBGKY HIERARCHY 

The BBGKY Equations 

This theory starts with the BBGKY equations 
for low-order reduced distribution functions [t. nor­
malized to N!/ (N - 8)!] in the case of no external 
field. Incorporation of external fields should pose no 
serious problem later. The BBGKY equations arise 
from a partial integration of the Liouville equation.13 

Expressed in notation commonly used, these equa­
tions have the form 

aMI) + . aMI) = J (1) at VI ar
1 

1, 

where 

• a • 
L, = L V,'- - L 0;;, 

i-I or; i<i~l 

~; + L.t. J., (1) 

a 
0;1 = -Fij • ap-- ' ., 

12 E. W. Montroll, in Fundamental Problems in Statistical 
Mechanics, Ref. 4, pp. 23(}-249. 

13 Reference 3 and references therein. These works, how­
ever, impose boundary conditions on fN that are more 
stringent than needed. Equations 1 are valid for any condi­
tion on IN or 1,+1 at the walls which conserves number of 
particles in the system. 
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The L, is the streaming operator in the phase space 
of the 8 particles, J, is the collision integral which 
always involves knowing the distribution function 
for 8 + 1 particles, and the molecular force term 
is 8;; where the F;; are the intermolecular forces. 

Formal Solution of the BBGKY Equations 

We use the following formal solution of Eq. (1): 

f,(r', p', t) = e-'L'f,(r', p', 0) 

+ { dTe-TL.J.(r·, p', t - T). (3) 

The meaning of the operators is discussed in Ap­
pendix A, where also Eq. (3) is formulated from 
Eq. (1) by standard Green's function techniques. 
Proof of Eq. (3) may also be established by dif­
ferentiating it with respect to time and recovering 
Eq. (I), The first term of Eq. (3) represents the 
effect of the 8 particles interacting among them­
selves, and the last term represents the effect of 
"outside" particles interacting with the 8 particles 
through all times. 

It proves helpful later in eliminating non-Mark­
ovian time dependence from these equations to 
express ft(0) in terms of ft(t). This is done by apply­
ing exp (fL,) to Eq. (3) for 8 = 1: 

The Initial Correlations 

In any mechanical problem, the nature of the 
initial conditions profoundly affects the solution. 
In our problem the crucial question is the following: 
Over what range of distances of separation of the 8 
particles is there correlation of the particles' posi­
tions and momenta at time zero? Correlation is 
defined as any information which prevents the 
factorization, . 

f,(r', p', 0) = II Mri, Pi, 0). (5) 
i-I 

Initial conditions can be imagined for which cor­
relation extends over even infinite distances. How­
ever, so long as initial correlation plays an important 
role in a problem, the solution depends intimately 
on the nature of the correlation; every problem 
is different; and no one would expect a general 
treatment such as we are seeking here (e.g., like 
a Boltzmann equation) to be useful. 

We stress here that one's interest in f, is in that 
region of 8-particle phase space in which the 8 par­
ticles are engaged in a collision (at time t). If one 

rules out the chance of bound states, then the posi­
tions exp (- tL.)r· eventually (after a time T 0011 

characteristic of the duration of an 8-body collision) 
get farther and farther apart with increasing time. 
We must limit ourselves to times long compared to 
a time T corr characteristic of the initial correlations, 
where Teorr is defined as being representative of the 
minimum time beyond which the following expres­
sion is correct to whatever order is being treated 
in the given smallness parameter: . 

-.L'f (' , 0) -.L. II f ( 0) e , r , p , = e 1 r i , pi, . (6) 

This limitation is discussed in detail in Part IV. 

The Density Expansion 

Casting Eq. (1) into the form of an integral 
equation still leaves the infinite hierarchy of coupled 
equations, since J, contains f0+1' For a moderately 
dense gas, the obvious small expansion parameter 
to break this hierarchy is Nr~/V, where ro is a 
length characteristic of the range of the intermolec­
ular forces (or of the "size" of a molecule). The 
problem now is to determine the order in Nr~/V of 
the various terms encountered in Eqs. (3) and (4). 

First, we observe that TJ, is of order NTvr~/V 
compared to f., The N arises from the normaliza­
tion of f,+l compared to f •. The Tvr~ is the effective 
volume swept out by the 8 particles during the 
time T. This arises because of the presence of Fij 
in 80i , which restricts the effective configuration 
integral. It must be compared with the V of the 
normalization integral. 

In addition to the characteristic times Toorr and 
Teoll, it is convenient to discuss a time Tmfp = 
O(A/v), where A is the mean free path. Thus, Tmfp 

characterizes the average duration of free flight 
of particles between collisions. By the definition 
of Tmfp, it follows that NTmfpiir~/V is of the order 
of unity. Also, by the very definition of a relatively 
dilute gas, it follows that Too II « Tmfp. 

Until the discussion of Part IV, at which time 
the following restrictions are discussed and drasti­
cally reduced, we assume simply that Toorr = O(Tooll) 
and that T coIl < t « T mfp. We omit bound states 
from consideration. In this case the last term of 
Eq. (3) is of order Nr~/V compared to the others, 
and the hierarchy may be closed. 

Next, consider the first BBGKY equation, 

aMI) aMI) 
Teoll ----at + T CO llV1 '-ar;- = T co IlJ1(1). (7) 

The term on the rhs is O(Nr~/V) compared to fl' 
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It is possible at this point, as most theories do, to 
make the other terms small by limiting the problem 
to slowly varying conditions and to make an ex­
pansion in the gradients of the properties as well as 
in density. We simply limit our consideration to 
cases in which the first and second terms of Eq. (7) 
are separately of the same order in Nr~/V as the 
collision term. For a homogeneous system this is 
valid, because there the second term is zero and the 
first equals the third. In a steady state this is also 
valid, because there the first term is zero and the 
second equals the third. Our limitation omits from 
consideration systems for which the first two terms 
are each large, but whose sum is small, e.g., a gas 
rushing into a vacuum. 

By combining Eqs. (3), (4), and (6), one obtains 
an expression for f. valid to lowest order in Nr~/V: . 

f.(r·, p', t) ~ S12 ...• II Mi, t), (8) 
i-I 

where . 
S = e-1L

• II e· Ldil 
12···. - . (9) 

The order of application of successive exponential 
operators, as in Eq. (9), is from left to right. The 
streaming operators S thus demand that the phase 
point r', p' first be changed into what would be 
found if the 8 particles moved backward along exact 
s-body trajectories a time t, then forward along 
straight-line noninteracting trajectories for a time t. 
Clearly, if the initial r' are indeed close enough to­
gether to represent an 8-particle collision, then for 
t > Tooll, the S are independent of t. 

Since the only t-dependence in Eq. (8) rests in 
the Mt)'s, it is clear from the discussion of Eq. (7) 
that not only is ToollJ. of higher order in Nr~/V 
than f., but so also is Toollaf./at. In fact, to lowest 
order in Nr~/V for 8 > 1, the BBGKY equation 
is simply L.f. = O. Even this includes one term 
of higher order, since L. could be rewritten so as 
to express explicit change in f. due to motion of 
the center of mass of the 8 particles and also to 
relative motions among the 8 particles. The term 
in the center of mass variables would then be of 
one higher order in Nr~/V, but this does not affect 
the fact that L.f. = 0 is correct to lowest order 
for 8 > 1. For later reference we write three par­
ticular examples of Eq. (1) to lowest order using 
Eq. (8): 

La(1, 2, 3)S123Ml)M2)M3) = [L2(1, 2) 

(10) 

L2(2,3)S2aM2)M3) 

= [L 1(2) + L 1(3) - (J23JS23M2)M3) = 0, (11) 

L 2(1, 3)Slaf1 (l)f1 (3) 

= [L1(1) + L 1(3) - (J1aJS1aMl)M3) = O. (12) 

We also note that the difference between J(t - T) 
and J(t) in Eqs. (3) and (4) is of order Too\lafdat. 
Thus, J(t) may be used in these integrands with 
results correct to the two lowest orders in Nr~/V. 

ll. EVOLUTION EQUATIONS CORRECTED 
FOR DENSITY 

Functional Equation for It with 
Complete Density Correction 

Substitution from Eq. (6) into Eq. (3) for f2 
with use of Eq. (4), replacement of J(t - T) by 
J(t), and use of Eq. (8) in the J's yields 

Ml, 2) ~ S12Ml)M2) + "II. J dra dpa [ dT 

+ e-<L.O.2) «(J1a + (J2a)S123JMl)M2)M3). 

A counting parameter "II. ("II. = 1) has been used to 
display the relative order in Nr~/V of the terms. 
Performance of the T-integral formally and sub­
stitution of L's for (J's by using Eqs. (10)-(12) yields 

Ml, 2) ~ S12Ml)M2) + "II. J dra dpa{ _e-1L
•

O
•
2

) 

X e'L '(2)(1 - e-'L,(2»L~1(2)[L1(2) + L 1(3)]e'L •0) S28 

- e-IL.o.2)e'L,(1)(1 - e-IL'(U)L~1(1)[L1(1) + L 1(3)] 

X e'L '(2) Sla + (1 - e-·L•o .2»L;1(1, 2) 

X [L2(1, 2) + L1(3)JS12a}Ml)M2)M3). 

Since no function of ra precedes the L1(3)'s of each 
bracket, these terms all yield surface integrals over 
the boundary which vanish by particle conservation 
at the boundaries. In each case, the remaining op­
erator in the bracket is canceled by the preceding 
inverse operator. This leaves simply 

Ml, 2) ~ S12Ml)M2) + "II. J dra dp3 

X [-S12(1 - e-1Ld2»S23 - S12(1 - e- 1L '(U)S13 

+ (1 - e- 'L•o .2»S123JMl)M2)M3). (13) 
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This may be simplified by noting that 

X e'L,(l)e'L,(2)e'L,(3)MI)M2)M3) = 0 

for t» Teoll if r l and r2 are within approximately ro 
of each other. The reason is that the exp [-tL2(I, 2)] 
takes particles 1 and 2 a long way apart. Then the 
contribution of the first two terms in the bracket 
is the same as that of the last two terms and they 
cancel. This may be rewritten as 

- e-'L.(1.2) S123 - SI2]MI)M2)M3) = 0, (14) 

which may be used to replace the three terms in 
Eq. (13) which have exponential operators remaining: 

X (S123 - SI2S23 - SI2S13 + SI2)MI)M2)M3). (15) 

Equation (15) is the generally accepted form of f2' 
correct to the first two orders in density.2-4.7.8 

Boltzmann Equation for /1 with 
Complete Density Correction 

The evolution equation for fl may be obtained 
simply by substituting Eq. (15) directly into Eq. (1): 

(16) 

We use the notation 

and expand SI2!I(I)!I(2) in an effort to obtain a 
Boltzmann collision integral plus corrections: 

Mr~, pOMr~, p~) ~ Mrl, pOMrl, p~) 

+ [AMrl' p~)(r~ - rl)-aMrl, pO/arl 

+ AMrl, pO(r~ - rl)-aMrl, pD/arl]. (18) 

This assumes that f 1 is essentially a linear function 
of r over distances of order VTeoll. 

The first term of the expansion is 

!I(rl' p{, t)!I(rl' p~, t), 

which we write J2. The primed momenta depend 
only on r21 , PI, and P2, and all points r21, PI, and P2 
on the same two-body trajectory lead to the same 
p~ and p~. Thus, p~ and p~ are constants of the motion 
on such a trajectory; thus J2 satisfies the equation 
for such constants: 

Since 812 is odd in r21 , J2 must be odd in r2l . Thus, 
the last term in Eq. (19) is odd in r21 and vanishes 
in the integral over r21 . The J2 part of SI2fl(l)fl(2) 
therefore gives the classical Boltzmann surface inte­
gral, as is seen by choosing as integration surface 
a large cylinder about r1 with axis parallel to V21 . 
On the surface where dS21 -V21 < 0, !I(I')fl (2') 
equals simply !I(1)!I(2) because the particles have 
not yet interacted. This surface yields the unprimed 
term in the conventional Boltzmann equation. The 
other surface where dS21 -V21 > 0 yields the primed 
term. 

The bracketted correction terms in Eq. (18), 
written [ ... ], may be rewritten by use of the fol­
lowing identity: 

[ ... ] = M2')(r~ - rD -aMI') + Ml')(r~ - rO _ aM2') 
arl arl 

+ M2')(r~ - r l)- af~~~') + MI')(r~ - r l)- af~~~') 

a = !(r~ - r l + r~ - r l ) --;- UI (I')M2')] 
uri 

+ !(r~ - rO.[MI') af~~') - M2') af~~~') ] 

= !(r2 - rl)-aa Ul(I')M2')] 
r l 

In the first step the same quantities were added 
and subtracted to [ ... ]; in the second step [ .. -] 
was equated to half the sum of itself and the rhs 
of the first step; in the third step use was made of 
the fact that r1 + r2 = r~ + r~. 

On using Eq_ (18) in Eq. (16), then applying 
Eq. (19) and making a surface integral out of the 
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volume integral, and using Eq. (20) to rewrite the 
correction terms, one obtains 

aftCI) + afl (1) at v1 ·ar: 
= J dp21 J dS21·v21ftCrl, pi, t)ftCrl' p~, t) 

+ ~ J dr2 dP2 812{(r2 - r1)· a~1 [ftCr1, pi, t) 

X ftCrl' p~, t)] + (r~ - ri). JMr1, pi, t) 

X aMrl' p~, t) _ f (r p' t) aMr1, pi, t)]} 
ar1 1 1, 2, ar1 

(21) 

The first term on the rhs of Eq. (21) is the classical 
Boltzmann integral written in a slightly unconven­
tional form, as noted after Eq. (19). The remaining 
terms give the complete correction to the next 
order in Nr~/V. 

m. COMPARISON WITH RESULTS OF OTHERS 

Theory of Enskog 

The first major work on correcting the Boltzmann 
equation for higher densities was done for a hard­
sphere fluid by Enskog in 1921.14 He ruled out" three­
particle contributions" on physical grounds, stating 
that only two-body collisions play a role in hard­
sphere fluids. There is, however, great difficulty in 
defining three-particle contributions, since by their 
very order in density one is led to suspect that all 
the correction terms present in Eq. (21) are three­
body in origin. 

In order to obtain Enskog's result we note that 
to the first two orders in Nr~/V, f2 is a solution 
ofEq. (1): 

X af~ + v .(af~) + Xv .(ag ) + Xv .(at~) at 21 ar21 r, 21 ar21 r, 1 arl r., 

- 812f2 = XJ~, (22) 

where we have changed to the variables r 1 and rZl = 

r 2 - r 1• We have also written Eq. (15) in the form 
f2 = f2 0 + xg. If the 812f2 in first BBGKY equation 
is replaced by its value from Eq. (22) and the sur­
face integral about r l obtained, one gets 

14 D. Enskog, Kungl. Svenska Vetenskaps Akad. Handl. 
63, No.4, 1921, given in S. Chapman and T. G. Cowling 
The Mathematical Theory of Non-Uniform Gases (Cam­
bridge University Press, London, 1952), 2nd ed., Chap. 16. 

aMI) + aMI) at v1·ar; 

= J dp21 J dS21·V2d~ + X J dp21 J dSZl·V2d~ 
J d d [at~ (an) JO] + X r21 P2l at + VI· a - 2 . 

r 1 ru 
(23) 

The time derivative term yields 

f (r p') aMr1 , pD + f (r p') aMrl , pi) 
1 I, I at I 1, 2 at 

= Mr1, pDJ~(rl' p~) + Mrl , pnJ~(rl' pi) 

- f (r p')v' • aMr 1, p~) - f (r p')v' • aMr 1, pD I 1, 1 2 ar1 1 1, 2 1 ar
1 

' 

(24) 

where use was made of Eq. (1). Since 

( a) (a) (a) (a) (a) - =- +- =-; +-, 
ar1 r" ar1 r. ar2 r, arl r,' ar2 r," 

(25) 

the other terms in the bracket of Eq. (23) yield 

f (P')v • aMp~) + f (P')v • aft(pD - J 0(1 2) (26) 
1 1 1 arl 1 2 I arl 2,· 

We can now rewrite Eq. (23) as Boltzmann col­
lision integral plus corrections, an expression equiv­
alent to Eq. (21) but easier to discuss from the 
point of view of Enskog: 

aMI) aMI) J d J dS f ( ')f ( ') at + v1·ar: = P21 21· V21 1 1 12 

+ X J dp21 J dS21.V21[M2')(ri - r1)· af~~~') 

+ ft(I')(r~ - r l)· at~~') + mI, 2)] 

+ X J dr21 dP21[ftCI')(VI - V~).afl~;:) 

+ ft(2')(VI - vi). af~~') + MI')J~(2') 

+ ft(2')J~(I') - J~(I, 2)]' (27) 

The positions of all fl's appearing in Eq. (27) 
are r I, and the times are all t. The 0 superscript 
means to lowest order in density; f~ and f~ are 
given by Eq. (15). 

Enskog's hard-sphere result is equivalent to the 
surface integral correction in Eq. (27) only, omitting 
the term in f~. His surface is chosen to be infinites­
imally outside the surface of particle 1, thus r~ = r 2 
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and r~ = rl, since the two-body collision time is 
zero. He made an ad hoc correction for all further 
density effects by multiplying his result by x, a 
function of !Crl + r2) only. This form of correction 
was known then to be an oversimplification, but it 
was hoped to yield a useful semi-empirical relation. 
When one considers Enskog's theory in the light 
of Eq. (27), it is clear how difficult it is to say which 
terms have two-body and which terms three-body 
origin. Only the g and the J~ demand knowledge 
of three-particle trajectories. 

Theory of Born and Green 

A major contribution to the study of dense gases 
was made in 1946 by Born and Green. ls They 
initially limited their work to considering only two­
body effects, which permitted them to use an ex­
pression which gives the same results as simply 

Ml,2) = e- tL ,o.2lMl, t = 0)M2, t = 0). (28) 

They then change the time dependence in the l/s 
from 0 to t by using what amounts to Eq. (4) with 
the last term neglected. This leads to the approxi­
mation Ml, 2) = SI2ft(1)ft(2) and thus to the 
evolution equation given by Eq. (21) without the 
last integral with the s's. 

It is a matter of definition whether this theory 
of Born and Green is consistent at even the two­
body level. The neglected corrections like the last 
term of Eq. (4) are truly of two-body origin. In 
fact, only the S123 term of Eq. (28) involves true 
three-body collisions. The difficulty with the Born­
Green theory is of course that it sets out to get 
only some of the correction terms at a given order 
in a perturbation series. 

Theory of Bogoliubov, Choh, Uhlenbeck, and Cohen 

The first complete nonequilibrium theory of the 
statistical mechanics of dense gases was suggested 
by Bogoliubov in 1946,1 elaborated by Choh and 
Uhlenbeck in 1958,2.3 and later by Cohen.4 This 
theory rested on certain assumptions which proved 
very difficult to analyze. These are discussed in 
Part IV of this paper. The results of the Bogoliubov 
theory for the density corrections are identical to 
Eqs. (15) and (21). 

Theory of Prigogine, Balescu, Resibois, et al. 

Since 1959, the group in Brussels under the guid­
ance of Professor 1. Prigogine has developed a formal 
theory of irreversible processes5 which has had pro-

16 M. Born, and H. S. Green, Proc. Roy. Soc. (London) 
A188, 10 (1946). 

found influence. The Brussels theory was not es­
pecially suited to a density expansion, and only 
recently has it been shownlo to give identical results 
to the Bogoliubov theory, and thus to Eqs. (15) 
and (21). Some of the physical implications of the 
Brussels theory are discussed in light of this paper 
in Part IV. 

IV. DISCUSSION OF THE RESULTS 

List of Physical Restrictions Imposed in order to 
Obtain Some of the Results 

In the subsequent discussion it is convenient to 
refer to a numbered list of requirements used in 
obtaining some of the results of Parts I and II: 

1. System composed of classical point particles 
interacting through pairwise, short-range forces. 

2. System volume large compared to any length 
of interest; enough particles that unity may be 
neglected compared to N. Fixed number of particles 
in system. 

3. Region of configuration space many mean free 
paths from the walls. 

4. No external forces. 
5. Time long compared to Teorr and T oo 11. 

6. No bound states. 
7. Convergent "density" expansion in powers of 

Nr~/V, with the physical restriction imposed in the 
discussion of Eq. (7) regarding rate of change of 11 
with time and space. 

8. Use of causality to determine the" direction of 
time"; i.e., correlation now is due to interaction 
in the past. 

9. Approximately linear form for 11 = ft(r) over 
distances of the order of a mean free path. 

Validity and Significance of the Formal 
Solution, Eq. (3). 

The BBGKY equations are identical in content 
with the formal solution, Eq. (3). As we have used 
them, they demand requirements 1-4 inclusive. Re­
quirement No.1 could be weakened with no difficulty 
by formally incorporating an explicit three-body 
term into the intermolecular potential. This term 
would arise in the first density corrections and 
would have the effect of changing the trajectories 
and energies during three-body collisions. 

Requirements Nos. 1 and 3 are coupled. The 
system must be large so the effects of the boundaries 
are negligible in the interior. Any choice of boundary 
condition that is consistent with the physical situa­
tion is satisfactory. Requirement No.3 eliminates 
explicit dependence in Eq. (3) on the particular 
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boundary condition chosen. Usual ways of eliminat­
ing explicit concern about boundary conditions are 
either to let N ~ co, V ~ co, N /V ~ finite; or 
else to work on a time scale t « Vi/v. 

If one desired to relax requirement No.4 and 
formally incorporate the effects of external forces, 
no serious problem would arise. Added terms would 
appear in the operator L giving the effect of the 
external force on the free motion. Furthermore, in 
computing the trajectories during collisions, the 
paths of all particles would be modified by the 
forces. 

The Initial Correlations and the "Initial Period" 
of Bogoliubov 

The problem of statistical mechanics starts with a 
physical system about which, as a result of meas­
urements, certain information is known. By using 
this information and the fact that the system evolves 
through the mechanical motion of its constituent 
particles, statistical mechanics sets out to compute 
the probabilities of the various possible results of 
subsequent measurements that might be made on 
the system.16 Since the initial information is almost 
never complete mechanical information, one con­
structs a statistical ensemble into which one builds 
the initial information and nothing more. 

Information on initial correlations might be of 
two kinds. The first is precise knowledge of how 
pairs, triples, etc. are correlated. The second is a 
less precise knowledge that whatever correlations 
the particles have, it is similar to the way they 
would have been correlated had they evolved me­
chanically from some earlier state at negative time 
(like t = - co ). 

If precise information of the first kind is available, 
then it is clear whether or not T oorr is finite and there­
fore how long one must wait for times long com­
pared to Toorr for our general equations to become 
valid. Information of the first kind is rarely available, 
and in many cases, of course, T oorr is of the same order 
as Too11. However, it is easy to imagine situations 
for which Toorr is infinite. For example, if the initial 
positions and momenta of all the particles were 
known quite closely, this would imply that even 
very complicated correlations were physically ac­
cessible. One would then be forced to study the 
exact evolution of f N as an exercise in classical 
mechanics. The simplications of statistical mechanics 
would not arise. However, only in special uses of 
statistical mechanics does there seem any likelihood 

15 F. C. Andrews, Equilibrium Statistical Mechanics (John 
Wiley & Sons, Inc., New York, 1963), Sec. 3. 

of devising experiments to yield such complete in­
formation. 

Another example of initial conditions leading to 
a large value of T oorr is the following: Suppose a non­
equilibrium system is allowed to evolve during the 
time period -T to O. Then at 0 the momenta of all 
the particles are simultaneously reversed. Clearly, 
during the period 0 to T, the system must evolve 
away from equilibrium. In this case, the ensemble 
one constructs at t = 0 must reflect the information 
that with all momenta reversed it evolved from a 
certain nonequilibrium condition at t = -T. If 
this is built into the ensemble, all members will 
return to the nonequilibrium condition by the time 
T. The statistical mechanics agrees with what one 
knows must happen, but during the period 0 to T, 

no simple, general evolution equation describes the 
ensemble. The special initial conditions dominate 
the evolution. 

The second kind of information on initial cor­
relations is less specific. For a given value of t, 
one has instead of Eq. (6), . 
e-'L'I.(O) = e- 1L , II Mi, 0) + correction terms. 

(30) 

The question is, of what order in density are the cor­
rection terms? Consider, for example, 12. After time 
t (t > T oo11), one is concerned with factoring 12(0) 
for T21 of the order of v21t. Particles 1 and 2 are on 
incoming precollision trajectories. The only way 
they could be correlated is by one or both of them 
having bounced off other particles of the fluid after 
a previous direct interaction. If one other particle 
is involved, the effect is O(Nr~/V) compared to 
Ml, 0)M2, 0). If II other particles are involved, the 
effect is O(Nr~/Vr. As v21t increases, the most prob­
able number of other particles involved in the cor­
relating collision increases rapidly. Since these initial 
correlations are completely analogous to those that 
develop in the gas naturally through mechanical 
interaction, the following may be stated: For t 
greater than a typical two-body collision time, the 
correction terms are at least of one higher order 
in NT~/V. For t greater than a typical three-body 
collision time, the correction terms are at least of 
two higher order in Nr~/V. The generalization is 
immediate. 

It is clear that general evolution equations arise 
only for times long compared to both Toorr and T oo 11. 

The formulations in Part I were made under the 
assumption that T oorr and T 0011 were of the same order 
of magnitude. As seen above, this is by no means 
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necessarily true. However, if in order for t to exceed 
T corr , Nfjtr~/V is no longer of order Nr~/V, the work 
of Part I appears to fail. 

This question may be resolved simply by rede­
fining the origin of the time scale, since the absolute 
value of t is meaningless. With the presence of 
explicit correlation of the first kind, one merely 
needs to wait for h » T oorr, then choose t1 as the 
time origin. The only kind of correlation present 
then would be of the second kind. The second kind 
of correlation, however, is always present in the 
fluid. It is correctly treated by the theory of this 
paper. So long as it is known that the system evolved 
mechanically for a time long compared to T col h 

then one may be assured that this source of cor~ 
relation is accounted for by this theory, whatever 
origin of time is chosen. This is true even if t is for~ 
mally equal to zero. 

It is clear that the "initial period" of Bogoliubov 
is the period T corr during which the initial correla~ 
tions playa significant role in the problem. During 
this period, each problem is a special case. Bogoliubov 
suggested that this period would be of order Tcol1, 

which indeed it may be for many initial conditions. 
But of course it might be of any length, depending 
on the initial information. 

This also is the period during which in the Brussels 
theory the presence of" destruction fragments" dom~ 
inates the evolution of f •. Only after the natural 
elimination of these diagrams by the mechanical 
processes discussed above, does the Brussels theory 
lead to closed expressions. 

In summary, during the time T corr, the particular 
evolution demanded by the knowledge of explicit 
initial correlations loses its dominant role. Then, 
the only correlations arise from the mechanical 
motion of the particles. So long as the gas is relatively 
dilute, i.e., Tcoll « Tmfp, general closed equations are 
then obtained to describe the subsequent evolution. 

Validity of Functional Equations for /2, /31 ••• 

Under requirements 1-8, it is proved above that 
f. becomes a time-independent functional of f l'S, with 
all the time dependence lying in the l/s. To lowest 
order, f. is given by Eq. (8). To the first two orders, 
12 is given by Eq. (15). This establishes the physical 
requirements under which Bogoliubov's hypothesis 
that f. becomes a functional of f1 is true. 

The first five requirements and the possibilities 
of weakening them are discussed above. Require­
ment No.6 is a severe limitation, since at even 
moderate densities bound states affect gas properties 
profoundly at low temperatures. Perhaps the in~ 

creasing simplicity of the physical picture presented 
by this theory will lead at least to a useful approxi~ 
mation for treating bound states. 

One might ask how important requirement No. 7 
is to the general theory. In this paper there appears 
to be a vital need for Tooll « Tmfp or else the entire 
analysis fails. In presentations of the Bogoliubov 
and the Brussels schools, the theory appears to be 
valid for all densities, including those of liquids. 
However, the analysis is difficult for the nonconver­
gent virial-type series that results. Without a well­
defined smallness parameter, there is no way of 
truncating the series. The meaning of Tooll is unclear. 
The Bogoliubov theoryl-4 avoids the entire ques­
tion by applying the factorization of Eq. (7) at 
t = <Xl. There is some question as to the meaning 
of infinite time. It is also uncertain how long one 
must wait for such equations, even if they were 
tractable, to describe satisfactorily a liquid system. 

The density correction terms to even higher orders 
in Nr~/V could be obtained by methods similar 
to those used here if ever one wanted them. How­
ever, it seems likely that if a gas is so dense that 
four-body collisions play a significant role in its 
evolution, then the requirement T 0011 « T mfp is no 
longer met, the gas is not reasonably dilute, and the 
entire analysis fails. 

The restriction imposed in the discussion of Eq. 
(7) could be lifted for gases known to be evolving 
rapidly with sharp gradients in physical properties. 
A reordering of the terms would result. This is 
another case of special initial conditions or special 
boundary conditions dominating the solution. 

Requirement No.8 is more philosophical than 
scientific.17 It is universally accepted that correla­
tion between two events implies that the events 
interacted at some time in the past. This is simply 
a statement of causality, and it represents the way 
the direction of time is always established. 

Validity of Boltzmann Equation with Density Correction 

The transport or evolution equation for it, Eq. 
(21), has been derived in the form of a classical 
Boltzmann equation plus correction terms in the 
density. The result has all nine requirements as 
necessary and sufficient conditions for its validity. 
The irreversibility displayed by Eq. (21) is not 
"merely an illusion introduced by the imperfections 
of the statistical method" nor does it arise through 
any approximation. The information available about 
the system at time zero is built into an ensemble, 

17 H. Reichenbach, The Direction of Time (University of 
California Press, Berkeley, California 1956), especially Sec. 18. 
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each member of which is in a completely specified 
mechanical state. Then, using mechanics, the evolu­
tion of the ensemble is followed. The system about 
which one wishes to make predictions is actually 
represented by only one phase point in the ensemble. 
but since one does not know which, he must make 
his predictions from the entire ensemble. If he 
wants to predict a quantity dependent on only 
single particles, it is reasonable to predict the average 
of that quantity weighted by f1dr dp. The fact that 
fl goes to equilibrium reflects simply the following 
truth: A reasonable man's predictions of properties 
will with time proceed to the essentially time-in­
dependent values associated with the equilibrium 
condition. This is so if the predictions are based 
on the available initial information and on knowledge 
that the system evolves through the mechanical 
motion of its constituent particles. Once the pre­
dicted values of physical properties reach the equilib­
rium values, they stay there forever, even though 
the system may actually be undergoing very un­
likely fluctuations. The likelihoods of various fluctua­
tions are correctly given by the final "equilibrium" 
form of the function ft(r, p). The initial information 
available is incomplete, and the final information 
considered of importance is only partial (i.e., f1 as 
opposed to fN), and thus irreversibility is perfectly 
natural. 18 
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APPENDIX (A) THE GREEN'S FUNCTION 
SOLUTION OF THE BBGKY EQUATIONS. 

The Green's functions of the Liouville operator 
have been previously investigated,19 but the results 
applicable to this paper are derived below much 
more concisely. For brevity we drop the 8 subscripts 
and denote the vectors r' and p' by rand p. 

The solution of the homogeneous Liouville equa­
tion, 

af(r, p, t)/at + Lf(r, p, t) = 0 (AI) 

with the initial condition f = f'(r, p, t') at t = t' is 

fer, p, t) = exp [-(t - t')L] f'(r, p, t' ), (A2) 
18 An extensive discussion of this viewpoint is given by 

F. C. Andrews, Proc. Natl. Acad. Sci. U. S. 53, 1284 (1965); 
54, 13 (1965). 

19 F. C. Andrews, Bull. Classe Sci. Acad. Roy. Belg. 46, 
475 (1960). 

as may be proved by substitution into Eq. (AI). 
The fact that exp [- (t - t')L] is the phase-space 
transformation operator for the 8 particles may be 
proved by showing that a general solution of the 
homogeneous equation is any arbitrary function 
of the variables 

r~ = r; - J' v;(t l ) dt l and p~ = p; - J' Fi(t l ) dt l , 

t' " 

where Vi(t 1) is the exact velocity of particle i at 
time tl and Fi(tl) the exact force on it at time t1 , 

when all 8 particles have been interacting among 
themselves. The proof is immediate on substituting 
such a function into Eq. (AI) and performing the 
differentiations. 

Now, we seek the Green's function which is a 
solution of the equation, 

(a/at + L)G(r, p, t I r', p', t') 

= oCr - r/) o(p - p') o( t - t'). (A3) 

Each delta function in a phase-space variable is of 
course (38 )-dimensional. If g is any solution of the 
homogeneous equation and 71(X) is the Heaviside or 
unit step function defined by 71(X) = 1 for x ~ 0, 
71(X) = 0 for x < 0, then 

(~t + L )[71(t - t')g] = g(~t + L )71(t - t') 

= go(t - t'). (A4) 

If we choose g = exp [- (t - t')]o(r - r/)o(p - p') 
in Eq. (A4), the effect of the operator's acting on 
71(t - t')g is to leave 

oCt - t') exp [-(t - t')L]o(r - r')o(p - p') 

or simply 

oCt - t')o(r - r')o(p - p'). 

Thus such a choice of g gives a causal Green's 
function: 

G(r, p, t I r', p', t') 

= 71(t - t')e-<H ')L oCr - r')o(p - p') (A5) 

= 71(t - t')e<H')L' oCr - r')o(p - p'). (A6) 

The L' acts on primed quantities. The presence of 
the Heaviside function is the only difference between 
the Green's function and the solution of the homo­
geneous equation, which is really a phase-space 
transformation function. 20 Which of the two equiv-

20 H. Jeffreys, Phil. Mag. 33, 815 (1942); Moyal, J. E./ 
Proc. Cambridge Phil. Soc. 45, 99 (1949), Ross, J. and 
Kirkwood, J. G., J. Chern. Phys. 22, 1094 (1954); Ross, J., 
J. Chern. Phys. 24, 375 (1956). 
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alent forms for G is used depends on the coordinates 
over which the integration is performed. One does 
not want the coordinates of integration to be acted 
on by the exponential operator. So the operator 
in the first expression may be viewed as acting on 
the unprimed coordinates, moving them back along 
the trajectory a time t - t'. It is completely equiv­
alent to consider the second form where the op­
erator moves the primed coordinates forward along 
the trajectory a time t - t'. 

The inhomogeneous problem, Eq. (1), may now 
be solved by standard Green's-function techniques.21 

The equation for the adjoint Green's function is 
multiplied by t and integrated over r, p, and t. 

21 P. M. Morse, and H. Feshbach, Methods of Theoretical 
Physic8 (McGraw-Hill Book Company, New York, 1953), 
Sec. 7.5. 

Also, Eq. (1) is multiplied by G and integrated over 
r, p, and t. The two resulting equations are subtracted 
and use is made of Green's theorem in its general 
form. The integrals over the p- and r-surfaces vanish, 
the t = <Xl contribution is zero because of the 
Heaviside function, and only the t = 0 contribution 
from the bilinear concomitant remains. Use is made 
of the symmetry: 

GCr, p, t I r', p', if) = G(rf, p', t' I r, p, t) 

and the primed and unprimed variables may be 
interchanged. When the delta functions are inte­
grated over and the Heaviside function used to 
restrict the range of the tf -integration, the expression, 
Eq. (3), is obtained for t.22 

22 Similar integral equations have been derived before, 
e.g., Hollinger and Curtiss, Ref. 8. 
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In this paper a variational principle is established which fully characterizes the initial-value 
problem associated with the time-dependent SchrOdinger equation. 

INTRODUCTION 

I N a previous paper1 variational principles were 
established for the initial-value problems as­

sociated with the heat conduction and wave op­
erators. Subsequently, Gurtin and Leitman2 dem­
onstrated the usefulness of these principles in obtain­
ing approximate solutions by direct variational 
methods. 

In this note I show that the initial-value problem 
for the time-dependent Schooinger equation can 
also be characterized by means of a variational 
principle. 

In the interest of brevity I omit all smoothness 
hypotheses and use the formal notation of the cal­
culus of variations. 

THE INITIAL-VALUE PROBLEM 

Let R denote a region in n-dimensional Euclidean 
space, x = (Xl, X2, .... , Xn) a point of R, B the 
boundary of R, t ~ ° the time, 

\1 2 = t a
2

2 ;-1 ax; 

the Laplacian operator, and 

v = (a/aXl, a/aX2, ... , a/axn) 

the gradient operator. We state the initial-value 
problem for Schr6dinger's equation as follows: 
assume that we are given a constant k ~ 0, an 
energy function Vex) on R, initial data CPo(x) on 
R, and boundary data ¢;(x, t) on B X (0, ex» ; 

we are to find a function cp(x, t) on R X [0, ex» 

which satisfies Schrodinger's equation 

(1) 

* These results were obtained in the course of an in­
vestigation sponsored by the Advanced Research Projects 
Agency, Department of Defence under ARPA Contract 
Sd-86 with Brown University. 

1 M. E. Gurtin, Quart. Appl. Math. 22, 3 (1964). 
1M. E. Gurtin and M. J. Leitman, "On the Use of Vari­

ational Principles for the Approximate Solution of Linear 
Initial-Value Problems" Rept. No. Cll-96, Contract Nonr 
562(10), Brown University, December 1964. 

the initial condition 

cp(x, 0) = CPo(x) on R, 

and the boundary condition 

(2) 

cp(x, t) = ¢;(x, t) on B X (0, ex». (3) 

Our variational principle is based on a reformula­
tion of this problem as a boundary-value problem 
for a certain integrodifferential equation. With this 
in mind we integrate (1) with respect to time, 
use (2), and arrive at the relation 

i[cp - CPo] = -k f \12cp ds + V f cp ds. (4) 

If we define the convolution f * g(x, t) of two func­
tions f(x, t) and g(x, t) in the usual manner: 

f * g(x, t) = f f(x, t - s)g(x, s) ds, (5) 

and notice that, since V is a function of x alone 
and k is a constant (function), 

k * g(x, t) = k f g(x, s) ds, 
(6) 

V * g(x, t) = Vex) f g(x, s) ds, 

we see that (4) can be written in the following form: 

i[cp - CPo] = -k * \12cp + V * cpo (7) 

It is a trivial matter to verify that cp satisfies (1) 
and (2) if and only if cp satisfies (7). 

THE VARIATIONAL PRINCIPLE 

Before we state our variational principle it is 
convenient to define the convolution Vf * Vg(x, t) 
of the vector-valued functions Vf(x, t) and Vg(x, t) 
as follows: 

n at a 
Vf * Vg = L: - *-.fL. 

;-1 ax; ax; 
(8) 

Theorem. Let K denote the space of all functions 
cp(x, t) on R X [0, ex» which satisfy the boundary 

1506 
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condition (3). For each fixed time t ~ 0 let OJ (. ) 
be the functional defined on K by 

OJ(ip) = L [(V * ip + 2iipo - iip) * ip 

+ k * Vip * Vip](x, t) dx. (9) 

Then 

oGI(ip) = 0 over K for every fixed t ~ 0 (10) 

at a particular function ip if, and only if, ip satisfies 
Schrooinger's equation (1), the initial condition (2), 
and the boundary condition (3). 

Proof: By the definition of K and the remark 
following Eq. (7) it suffices to show that (10) holds 
at a particular function ip in K if, and only if, ip 
satisfies (7). Suppose ip belongs to K. By (9) and 
the associativity and commutivity of the convolution 

oOj(ip) = 2 i [(V * ip + i<po - iip) * Oip 

+ k * Vip * V Oip](x, t) dx (11) 

for t ~ O. Since every ip in K satisfies the boundary 
condition (3), it follows that 

Oip = 0 on B X (0, co) (12) 

and hence, if we apply the divergence theorem to 

(11), we find that 

oOj(ip) = -2 i [i<p - iipo 

+ k * \l2ip - V * ip] * Oip(x, t) dx (13) 

for every t ~ o. From (13) it is obvious that if ip 
in K is a solution of (7), then ip satisfies (10). To 
establish the converse assertion we assume (10) 
holds. Then (13) implies 

oOj(ip) = -2 f L 1/t(x, t - s)Oip(x, s) dx ds, 

1/t = iip - iipo + k * \l2ip - V * ip (14) 

for every t ~ 0 and every variation Oip which satisfies 
(12). But this fact and the "fundamental lemma" 
of the calculus of variations imply that ip must 
be a solution of (7). This completes the proof. 

We remark that this theorem is also valid when 
the region R equals the entire n-dimensional Eucli­
dean space; of course, in this instance, the boundary 
condition (3) is removed, but the functions ip in 
K, as well as the data ipo and V, are required to 
satisfy certain regularity conditions3 as Ixl -+ co. 

3 Sufficient conditions are that 'P., V, and the functions 'P 
in K, together with their gradients Vip, are all O(lxl--2), as 
Ixl -+ <Xl, uniformly on every closed time interval. 
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In one-dimensional hydromagnetic flow, switch-on shocks have been shown to be nonevolutionary, 
e.g., by Syrovatskii. Such shocks, however, may be considered as a superposition of a switch-on 
shock and an A1fv{m shock, and in this paper some results of such an assumption are examined. If the 
two shocks remain superimposed, the shock pair is, in fact, evolutionary. If the pair splits under the 
influence of incoming waves, a first-order nonlinear analysis indicates that highly unstable situations 
can occur. But there is a non-uniqueness implicit in the ansatz, and the author has not been able to 
exclude the possibility that a solution always exists which is stable except between shocks. 

1. INTRODUCTION 

T HE one-dimensional time-dependent equations 
of magnetohydrodynamics may be represented 

in conservation form 

U t + ix = 0, (1.1) 

where u is a vector and i a vector function of u. 
With a = ai/au = grad f, (1.1) takes the quasiIinear 
form 

u, + a(u)ux = 0, (1.2) 

which is an equation of hyperbolic type, for a has 
real eigenvalues and only simple eigenspaces. 

Weak solutions of conservation systems (1.1) which 
·are piecewise-continuous (i.e., solutions with shocks), 
satisfy across each shock the generalized Rankine­
Hugoniot relations 

s[u] = U], (1.3) 

where [ 1 denotes the jump across a shock, and s the 
shock speed. 

Even when (1.1) is hyperbolic, such solutions are 
not in general uniquely determined by their initial 
values, and some further condition at the shock is 
needed if initial or mixed initial and boundary value 
problems are to be well posed. In compressible fluid 
flow, any of several conditions may be assumed, e.g., 
that entropy does not decrease across a shock, that 
the flow is supersonic ahead of and subsonic behind 
the shock, or the evolutionary condition described 
below. In magnetohydrodynamics, however, the 
above conditions are not equivalent, and the evolu-

* The work presented here was done at the Courant 
Institute of Mathematical Sciences, New York University, 
under contract AT(30-1)1480 with the U. S. Atomic Energy 
Commission. 

t Present address: Department of Mathematics, Stanford 
University, Stanford, California. 

tionary condition is preferred, since the others may 
lead to unstable situations. l 

The hydromagnetic switch-on shock, which is 
needed for the solution of certain piston problems,2 

is not evolutionary in the usual sense; this raises 
questions on the validity of a one-dimensional anal­
ysis, and motivates the present work. 

The switch-on shock can be considered, however, 
as a superposition of a switch-on and an Alfven 
shock which may separate under the influence of 
perturbing waves, the Alfven shock falling slowly 
behind. In the region between them, Eq. (2.1) is 
assumed to hold. 

Under small perturbations, the switch-on shock 
becomes an almost switch-on shock traveling faster 
than the Alfen shock or wave behind it. A perturbing 
Alfven wave ahead rotating the transverse compo­
nent of magnetic field through a given angle, is mag­
nified by the switch-on shock into an Alfven wave be­
hind the shock with the same angular rotation. Thus 
a small perturbation of the state ahead of the almost 
switch-on shock may produce a large and steep 
change in the region between shocks. 

If the perturbation is a pure Alfven wave, a non­
linear analysis shows that there is no resulting per­
turbation behind the "magnified" wave. However, 
the shock-wave-shock configuration may now be 
unstable to non-Alfvenic disturbances. 

If in the remaining region the solution, e.g., of the 
Cauchy problem depends continuously on the data, 
we shall consider the switch-on shock to be evolu­
tionary in a generalized sense. In the remainder of 
this paper we shall propose and investigate a plau-

1 A. 1. Akhiezer, G. Ia. Liubarskii, and R. V. Polovin, 
Zh. Eksperim. i Teor. Fiz. 35, 731 (1958) [English transl.: 
Soviet Phys.-JETP 8, 507 (1959)]. 

2 J. Bazer, Astrophys. J. 128, 686 (1958). 
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sible necessary condition for evolutionarity in this 
sense of the switch-on shock. 

The routine computation of the coefficients listed 
in Sec. 9 and in Appendix 1 has been omitted. 

2. THE EVOLUTIONARY CONDITION FOR A 
GENERAL SYSTEM AND FOR A SWITCH-ON 

SHOCK 

Let Uo, Ul be two constant states connected by a 
shock. The system has first-order stability [satisfies 
the generalized entropy condition (Lax3

), or the evolu­
tionary condition (Polovin4)j if the following condi­
tion obtains: 

Linearize Eq. (1.1) on either side of the shock 
about the states Uo, Ul, and linearize the Rankine­
Hugoniot relation (1.3) about the given jump and 
shock speed. The resulting system should be uniquely 
solvable for arbitrary initial conditions, and the solu­
tion should be bounded in terms of the initial 
conditions. 

The linearized equations are given by 

w; + a,w! = 0, i = 0, 1, (2.1) 

where Wi represents a small perturbation on Ui, 

and ai = a(uJ. Let Q~l be the matrix of (right) 
eigenvectors of ai, so that 

(2.1a) 

is the diagonal matrix of eigenvalues A!j) of a i • The 
change of variables ai = QiWi reduces (2.1) to 
characteristic form 

(2.2) 

or 

(2.2)' 

where ai = (all), al2
), ••• ), and a/asl;) is the direc­

tional derivative a/at + A!j)a/aX. Equation (2.2), 
represents a wave traveling to the left or right ac­
cording as A~;) is > 0 or < o. 

Without loss of generality, we assume the in­
dependent variable to be transformed so that the 
unperturbed shock speed vanishes; this leads to a 
simplification of the resulting formulas. 

With a dot representing differentiation with re­
spect to a small parameter E, we find from (1.3), 
using s = 0 at E = 0, 

s[u] = [h = [au], or s[uJ = alUl - aouo. (2.3) 

Making the change of variable Ui = Qiai, (2.3) 
implies 

a P. Lax, Commun. Pure Appl. Math. la, 537 (1957). 
( R. V. Polovin, Zh. Eksperim. i Teor. Fiz. 39, 1005 (1960) 

[English transl.: Soviet Phys.-JETP 12, 699 (1961)]. 

s[U] = Q~l Alal - Q;l Aoao. (2.4) 

We take (as subscripts) the state 0 to the right of 
the shock, the state 1 to the left. 

Then the a~ corresponding to positive (negative) 
A~ and the a~ corresponding to negative (positive) 
A~ represent incoming (outgoing) waves at the shock. 
The incoming waves are determined by the initial 
conditions, and the shock is evolutionary if the out­
going a i and i; may be chosen uniquely to satisfy 
(2.4) for each choice of incoming wave. A sufficient 
condition is that the column vectors of Q~l and 
Q;l corresponding to outgoing waves together with 
[uj are linearly independent, and span the space 
generated by the colunms of Q-l and Q;l correspond­
ing to incoming waves. Clearly the number of out­
going waves must be less than the number of vari­
ables, for otherwise they form, together with [uj, 
a dependent set. 

For shocks on the borderline of evolutionarity, the 
above condition may not be satisfied; one may, on 
approaching the borderline shock from evolutionary 
shocks (in a shock diagram) lose an outgoing wave, 
or the "outgoing" eigenvectors together with [uj may 
become linearly dependent. The former case occurs 
when a switch-on shock is approached from a fast 
shock or weaker strength; the latter case occurs 
when a 1800 Alfven shock is approached by Alfven 
shocks across which the magnetic field rotates 
through a smaller angle. 

Our claim is that the failure of these shocks to 
satisfy the above sufficient condition for evolution­
arity is not sufficient to damn them as nonevolu­
tionary; because of their borderline nature, one 
must take some account at least of quadratic as 
well as of linear effects. 

For instance, we should exclude those outgoing 
waves which perturb the shock to an adjacent non­
evolutionary shock; it may be assumed that such 
adjacent shocks will immediately, under the effects 
of second-order perturbations, resolve into the given 
borderline shock, plus small outgoing disturbances, 
and that the excluded outgoing waves will, therefore, 
not reach first-order strength. 

If the above exclusion is accepted, 1800 Alfven 
shocks are in fact evolutionary. For the 1800 Alfven 
shock is connected to a nonevolutionary slow shock. 
Hence the condition that the shock remain Alfven 
([B2j = 0) will provide an extra linear condition 

(2.5) 

sufficient to determine the outgoing waves uniquely. 
If all unperturbed components of B, u lie in an x-y 
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plane, and if the incoming waves lie in the same 
plane, we may replace (2.5) by the simpler restric­
tion 

(2.5a) 

It should be noted that as the angle through which 
the magnetic field rotates across an Alfven shock 
approaches ±11", the ratio of the sizes of outgoing 
to incoming waves is uniformly bounded. 

In the case of a switch-on shock, there are not 
enough outgoing waves, and the above "exclusion" 
does not help. One may, however, consider the 
switch-on shock as a superposition of switch-on and 
Alfven shocks, with a different free parameter as­
sociated with each shock speed. This leads to a 
"linearized" resolution of incoming waves that would 
seem to indicate stability. However, if the shocks 
have different speed they cannot remain super­
imposed, and the differential equation must be 
satisfied in the region between shocks. We describe 
now the specific assumptions and simplifications 
made. 

Let a switch-on shock separate two constant states, 
Uo ahead of and U2 behind the shock. The shock is 
assumed to split as described above into two shocks. 
Ahead of the switch-on and behind the Alfven shock, 
the equation is linearized about Uo and U2 respectively, 
and the linearized jump conditions are assumed for 
each shock. 

The Alfven shock may be replaced by a combina­
tion of an Alfven shock and a (steep) Alfven wave 
between the shocks, conveniently chosen. We shall 
say that such a system is evolutionary if for suffi­
ciently small disturbances impinging on the shocks 
from the regions "0" and "2", the outgoing disturb­
ances in "0" and "2" depend continuously on them 
in an appropriate sense, which may involve com­
paring states at neighboring rather than at indentical 
points. 

We abandon immediately the attempt to settle 
the evolutionarity of such systems, and pose a 
simpler question, the answer to which may indicate 
how things go. Suppose at a given time the state 
between shocks is to lowest order an Alfven wave. 
In the region between shocks, the equation is lin­
earized about this wave as carried out in Sec. 7 
(we shall see that because of the nonlinearity of 
the geometry, this procedure is justified only if the 
perturbations considered are of second or higher 
order in the reciprocal of the gradients in the wave). 
We ask if a small perturbation in the state between 
shocks will tend to decay. If so, we shall call the 
system weakly evolutionary. 

In Sec. 7, it is shown that if the Alfven wave and 
shock each have small amplitude, the system is 
weakly evolutionary. In Sec. 10, it is shown that 
if the Alfven shock is sufficiently large and the 
switch-on shock sufficiently small, the constant state 
between shocks is unstable and such a system is not 
weakly evolutionary (this does not imply that the 
system is not evolutionary in the above sense). 

The latter result suggests that an appropriate 
question to ask is this: given the state U2 and the 
state just behind the switch-on shock (determined 
to lowest order by the incoming waves ahead of the 
shock), can they be connected in such a way that 
the whole system is weakly evolutionary? A negative 
answer would provide strong grounds for believing 
that one-dimensional switch-on shocks do not exist; 
a positive answer would be a indication in their 
favor. 

We have not settled the last question. It can 
probably be done by numerical experiment if not 
by analysis, and we hereby bequeath the problem 
to the interested reader. 

3. THE SWITCH-ON SHOCK 

The vector u occurring in (1.1) in one-dimensional 
magnetohydrodynamics is given as 

{B~, B., pU%, pU~, pU., p, E}, 

where B~, B. are components of magnetic field, p 

is the density, ur , u~, u. are the components of fluid 
velocity U, E = tpu2 + pe + B2j2p. is the energy 
density (e is internal energy). The magnetic com­
ponent B% is constant and is treated as a parameter. 
We will denote the magnitudes of the transverse 
parts of Band u by B, and U" i.e., B, = (B! + B!)t, 
and u, = (u! + u:)t. For convenience we shall 
assume the fluid flow is in the negative x-direction 
(u% < 0). For the vector f we refer the reader to 
Bohachevsky.6 

If, in the state 0, B~ = B. = 0, and in the state 1, 
B! + B: > 0, the shock is called a "switch-on" 
shock. Such shocks present a more complicated 
picture not only because the state 0 has a multiple 
eigenvalue (the fast Alfven and speeds here coincide), 
but because the Alfven speed after the shock equals 
the shock speed. 

If the sound speed ao in the state 0 is greater than 
the Alfven speed Ao = IB%lt(p.p)-i, a small switch-on 
shock cannot be evolutionary, for there are too many 
outgoing waves. Further, its place in helping to 
resolve an initial discontinuity is taken by a centered 
switch-on simple wave. (The vector a = Qw, and 

i I. Bohachevsky, Phys. Fluids 5, 1456 (1962). 
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the gas-dynamical sound speed a will be distin­
guishable by context). 

In the case Ao > ao, the switch-on shock is not 
evolutionary according to the criterion of Sec. 2, 
as there are not enough outgoing waves (the shock 
travels at the Alfven speed). If an initial value prob­
lem with an initial switch-on shock and small in­
coming waves is to be well posed, there must be 
some stability relative to these disturbances, and, 
in at least a very limited way, there is. For, the 
unperturbed switch-on shock may be considered as 
a switch-on shock in an undetermined direction fol­
lowed by an Alfven shock. The effect of an incoming 
wave from the right (ahead of the shock), and con­
taining a transverse magnetic field, is to determine 
uniquely the state immediately behind the switch­
on shock. The switch-on shock is then perturbed into 
a fast (nearly switch-on) shock, which is closely 
followed by an Alfven shock or wave-and-shock com­
bination which "rotates" the state to one neighboring 
the unperturbed state on the left, which we call U2' 

A small variation in the incoming wave from the 
right may change the direction associated with the 
unperturbed "switch-on" shock, and hence may pro­
duce a gross change in the state immediately be­
hind the fast shock. However, this is rectified to the 
left by the Alfven wave and/or shock, so that out­
side of the thin region between the shocks, the 
resulting perturbations may be small (there are 
no outgoing waves to the right). 

Considering the fast-shock-Alfven wa ve-and-shock 
pair as a kind of "compound" shock, reflection and 
transmission coefficients may be computed, but they 
depend on the direction of switch on, and hence 
there is a nonlinear dependence of the (linearized) 
perturbed state on one parameter of the unperturbed 
state. 

4. DIRECTION OF SWITCHING ON 

The direction of the magnetic field after a switch­
on shock is determined by the transverse components 
of magnetic field and fluid velocity in the incoming 
waves from the right (ahead of the shock). For 
simplicity and without loss of generality, we will 
assume from this point that, in the unperturbed 
state ahead of the switch-on shock, u. = u. = O. 

We index the left side of the shock as 1, the right 
side as O. To the state U2 we associate an angle 8 
given by 8 = tan -1 B./ B". With the strength of 
the shock considered fixed (to zero order) Ul = Ul (8), 
a] = al (8), and Ql = Ql(8). 

Corresponding to Eq. (2.4) we have, with 8 the 
perturbed shock speed, 

s[UJ = Q~lAlal - Q~lAoao. (2.4)' 

Multiplying both sides of (2.4) by Ql, and noting 
that Ql[U] is a constant independent of 8, which 
we call a, we find 

Ala2 = sa + Ql(8)Q~1 Aoao. (4.1) 

Let the first component aI, of al represent the 
Alfven wave traveling at the shock speed (i.e., the 
corresponding eigenvalue Al = 0). Note that al = 0, 
for the jump in a switch-on shock is a linear com­
bination of eigenvectors of a l lying in the plane of 
the switched-on state. Hence the first component 
of Eq. (4.1) can be satisfied only if Ql(8)Q~lAoao 
has vanishing first component. The equation 
(Ql(8)Q~1 Aoao) I = 0 takes the form 

al cos 8 + a2 sin 8 = 0, (4.2) 

which will, in general, have two solutions, 81 and 
81 + 7r, with 0 ~ 81 < 7r. 

Since the system with velocity and magnetic field 
components restricted to a plane satisfies the evolu­
tionary condition, and because of the Galilean in­
variance of the equations, it is clear that the angle 8 is 
determined modulo 7r by the angle T = tan- l B./B. 
associated with the incoming perturbation to the 
right. 

A unique choice of 8 is made by requiring that 
the fast shock connecting the perturbed states be 
itself evolutionary, i.e., that the Alfven wave which 
traveled originally at the shock speed become out­
going. Since at the switch-on shock, 8 + Al + 
U" ¢' 0 provided B! + B! ¢' 0 in the incoming 
wave from the right, 8 will in general be uniquely 
determined by the condition 

8 + Al + u" > O. (4.3) 

5. DECOMPOSITION OF THE SWITCH-ON SHOCK 

We propose the following resolution of a switch­
on shock impinged on by small waves: 

At each instant the incoming waves from the right 
will determine an angle 8 through Eqs. (4.2) and 
(4.3). A fast shock 8 1 will connect the perturbed 
state to the right with a state 2 perturbed from 
u2(8). 

Initially, the state 1 will be connected through 
an Alfven shock 8 2 with a state perturbed from state 
2 (to the left, and associated with an angle ( 2), 

However, the fast shock speed will always exceed 
the Alfven speed behind the shock by an amount 
which is to first order proportional to B I = (B! + 
B!)l in the incoming wave. Hence the two shocks 
will tend to separate and there will develop a region 
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between in which the differential equation must be 
satisfied. 

We make the simplifying assumption that the 
state between the shocks is at anyone moment to 
lowest order an exact Alfven wave. (This assump­
tion is probably necessary for stability). Moreover, 
if the incoming disturbance is all from the right, 
and is chosen so that the state on the right connects 
by a fast wave to some unperturbed u(O), and if 
this incoming wave changes only by rotating, then 
the ansatz proposed is in fact an exact solution. 

6. THE SHOCK PAIR, COMPOSITE JUMP 
CONDITION 

It is easy to derive a composite linearized jump 
condition for the shock pair treated as a unit, as­
suming the state between the shocks to be constant, 
as is justified if the shocks are superimposed, or if 
the incoming waves vary very slowly in time; we 
need only eliminate the state between the shocks. 

Let 8 1, 8 2 be the perturbed fast shock and Alfven 
shock speeds, and lull, rub the unperturbed jumps 
at the fast and Alfven shocks. The jump conditions 
are 

8l[U]1 = _Q-l Alal + Q;;-l Aoao, 

82[U]2 = -Q;lA2a2 + Q~lAlal' 
Adding (6.1) and (6.2), 

(6.1) 

(6.2) 

8l[U]1 + 82[U]2 = _Q;l A2a2 + Q;;-l Aoao. (6.3) 

The linear condition for evolutionarity of such a 
shock pair is that the space spanned by "outgoing" 
waves from the pair together with the two jumps, is 
linearly independent and spans the space of "in­
coming" waves. (Note that UI may be computed 
either from a2 and 82 or from ao and 81') 

In case the Alfven shock is a 1800 shock, we must 
again impose (2.5) to ensure uniqueness. 

7. THE NONLINEAR REGION; EQUATION AND 
BOUNDARY CONDITIONS 

In the C8<se of time-dependent perturbations, we 
attempt to expand the solution about the steady­
state solution at each time t. In case the first-order 

x 

FIG. 1. Shock-splitting diagram. 

solution is an exact Alfven wave, the second-order 
term is bounded in terms of the incoming perturba­
tions, at least for small time, and perhaps for larger 
time. If the incoming perturbation is a general one, 
it is not clear whether the problem is well posed. 
We consider only the simplest case, in which the 
perturbations are of second order in the thickness 
of the Alfven wave. 

We assume that an initial switch-on shock has 
split up as described above under some small in­
coming waves, which have died out, so that we now 
have switch-on (fast) shock followed by a slightly 
perturbed steep Alfven wave, followed by an Alfven 
shock. And we shall consider whether the perturba­
tion in the Alfven-wave region will tend to die out. 

The states ahead of the switch-on shock, im­
mediately behind it, and immediately ahead of and 
behind the Alfven shock will be indexed by 0, 1, l, 
2, respectively (see Fig. 1). 

The region between the shocks is given to lowest 
order as an Alfven wave, with coordinates chosen 
so that the Alfven speed vanishes. We assign u = 
uo(O) + E2U\ f ,...., fo + lau\ ul = Q-l(O)a, with 
initial conditions 

00 = 00 (x) , Xo < x < Xl, (7.1) 
a(Oo, 0) = ao(O) , a07 = 0, 

where a07 (the last component of ao) corresponds to 
the nearly stationary Alfven wave. The assumption 
that the initial disturbance is of second order in E 

is consistent with the special assumption that there 
was an incoming switch-on shock of order E from 
the right, which was followed by a rotation of this 
perturbed state; in this case we will have aoo/ax = 
p(X)/E, where p = 0(1), p ¢ O. 

Analysis of the more general case (incoming switch­
on shock of order E followed by incoming waves of 
order E) is complicated by the nonlinearity of the 
geometry; a final answer to the question of stability 
must perhaps await such an analysis. 

To account for the effect of higher-order terms on 
the geometry of the shock pair, we shall let 0 = 

O(t, x) be a dependent variable, replacing a07 (we 
assume a07 == 0). We shall assume further that 
a .. = 0(0~). 

The unperturbed state behind the alfven shock 
is given by u = UO(02), the state just behind the 
fast shock by UO(Ol), and that just ahead of the 
Alfven shock (which depends on the solution) by 
u = uo(O,), 0, determined by the solution of the 
equation. 

In writing the boundary condition for a, we take 
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advantage of the fact that only a single wave crosses 
the region between shocks from left to . right, and 
represent the reflection matrices at the shocks (from 
the region between), simply as a vector. 

Let a = (ai, 0, ... ) + a', where al corresponds 
to the fast wave moving to the right. With S a 
vector depending on 01 - 01, and T a fixed vector 

a1 = a'· S ahead of the Alfven shock, 

a' = al T behind the fast shock. 
(7.2) 

As the unperturbed Alfven wave is stationary, 
we have 10. = 0, and the equation u. + I", = ° be­
comes, to the given order, 

uo, + E
2
U: + E

2(au')", = 0. (7.3) 

Substituting au' = Q-l Aa and multiplying (7.3) 
by Q, we find 

QUo, + lQ(Q-la). + lQ(Q-l Aa)", = 0. (7.4) 

Since Uo = uo(O), we have 

Uo, = O,uo• = O,eQ-l(O, 0, ... ,0, 1), (7.5) 

where e is a constant and 0, is to be found. 
Since Q~1 = O,Q;t, Q;1 = O",Q;t, and a7 = 0, 

the last row of (7.4) reads 

O,e + lO,(QQ;la)7 + E
2 0",(QQ;IAa)7 = 0. (7.6) 

To lowest order, then, 

0, = _(E20",/e)(QQ;1 Aa)7, = fleE) (7.7) 

and hence also Q~1 = fleE). 
Since 0, as given by (7.7) is independent of de­

rivatives of a, and since an Alfven wave may be con­
nected to any state in which B! + B: ;c 0, -0./0", 
is in fact the perturbed Alfven speed, which we 
denote simply by A7' Hence 

(7.8) 

Let a~, Q~, A~, ... ~ , denote the restrictions of 
a, Q, A, ... , to the space spanned by the first six 
components of a. The leading terms in (7.7) give 

a: + A~a: = -(QQ;IAra~. (7.9) 

It is convenient to replace the independent vari­
able x by 0, i.e., t, x, by a pair T, 0 with t = T. 
Then 

a/at = a/aT + 0, a/ao. 

Since 0, = fleE), we drop the term O,a;, and find 

a; + O",A ~a; = - O",(QQ;1 Ara~. (7.10) 

We estimate 0", as follows: Define To(O) as the 

smallest T ;::: ° for which 0 lies either on one of the 
shocks or between them. Then 

x(T, 0) = x(To(O), 0) + jT >-7(0, T) dT. 
To 

To lowest order, 

j T aA7 
x, = x,(To(O), 0) + iii (0, T) dT, 

To 

for 

[ax (To , O)/aTo] aTo/ao = fleE). 

Then 

a aA
7 

E2 (QQ-l ) 
aT x, = iii = c ' Aa, 7' 

Consequently 

a 2 a E2 
aT 0", = - 0", aT x, = - O! c (QQ;1 Aa,)7' (7.11) 

If 0", = fl(1/ E), then, according to (7.11), a/aT 0" = 
fl(I). Hence, to lowest order, 

O",(T, () = O",(To, 0) = O",«(). 

Since points 0 = constant travel just at the Alfven 
speed, it follows that to lowest order, 01 (i.e., 0 just 
ahead of the Alfven shock) is constant. Hence, to 
the given order of approximation, the problem is 
defined by Eq. (7.10), with 0", = 0",(0), boundary 
conditions (7.2), with S, T fixed, and some initial 
values for a~. 

Under the change of variable T = ET, a stretching 
of the time variable, (7.10) becomes 

(7.12) 

where now E()", = fl(I). 
An explicit solution to (7.12) or to (7.10) with 

boundary condition given by (7.2), may be com­
puted by taking a Laplace transform with respect 
to tor T, and its properties may then be investigated 
(the result of Sec. 10 is derived with the help of 
transform techiques). 

Here, we give a weak result, valid only for small 
Alfven shock angles, and if the total variation of 0 
in the Alfven wave is not too large. 

In the following we shall write for a~ simply a. 
Denote the Alfven shock angle 01 - 01 by 0., 

and the size of the Alfven wave 01 - O2 by OA' 

Theorem 7.1. There exists O. > ° such that to each 
10.1 < O. there corresponds a OA(I().i) > 0, such that 
if 10AI < OA, the solution to the initial-value prob­
lem given by (7.10), (7.12) with bounded initial 
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values decays exponentially fast in the maximum 
norm, with decay time of the order of E. 

To prove Theorem 7.1, we use the equation in 
the form (7.12). Let sup I EO .. I = p. Define TI = 
10AI p-I maXi,.7 Ix;ll. Define the norms lal. = 

sup, la(T, 0)1, and Iiali. = sup.-.,sls.lal., and define 
M = p~(QQ,1 An. 

Under suitable conditions, we shall derive an 
estimate of the form lal. ~ C lIall., with ICI < 1; 
exponential decay of lal. with respect to T is an 
immediate consequence, and since T = ET, the 
decay time is e(E). 

At the switch-on shock a' = alT [see (7.2)]. Hence 
lal2 = a~(1 + ITI2), and it follows that 

lal(t, 0)1 ~ (1 + ITI2)-1 laI.. 

For t such that T - TI ~ t ~ T, then 

lai(t, 0)1 ~ ITil (1 + ITI2)-1 Iiali. i = 2,3, ... 

(7.13) 

Integrating the ith components of (7.12) (i > 1) 
along characteristics originating at the switch-on 
shock, we find 

The boundary condition (7.2), together with the 
inequality (7.14), implies 

suP'-f.,sls. lal(t, 01)1 ~ {t; IS.IIT.! (1 + ITI
2r i 

+ t; IS.I ~I M} Iiall.. (7.15) 

Integration of the first component of (7.12) along 
appropriate characteristics originating at the Alfven 
shock leads to the estimate 

SUP'-ihSIS' lall , ~ {t; IS.IIT.I (1 + IT21)-i 

+ (1 + L IS.D ~I M} Iiall.. (7.16) 

In particular (7.16) applied at 0 = 01, together 
with (7.2), and integration of appropriate compo­
nents of (7.12) along characteristics originating at 
the switch-on shock leads to the estimate 

la.l. ~ [T.{t; ISiIIT.1 (1 + ITI
2r i 

+ (1 + L IS.D ~I M} + TaM] Iiall.. (7.17) 

Since TI = e 10AI, (7.16) applied to t = T, together 
with (7.17), implies 

lal. ~ (t; IS.T.I + eloAI) Iiall.· 

Hence for fixed S, T, such that :E IS.T.I < 1, 
o A sufficiently small implies 

lal./lla.11 < c < 1. 

It follows by an elementary argument that 

Iiall'+h ~ c Iiall .. 

and hence 

Iiall.+ r ., ~ c1rl 
Iiall .. 

where [r] is the integral part of T, proving Theorem 
7.1. 

8. JUMPS ACROSS THE SWITCH-ON SHOCK AND 
ALFmN SHOCK 

We recall that the state ahead of the switch-on 
shock is denoted by .10" and the state behind by 
111." As mentioned above, in the case ao > Ao, the 
shock is unstable, and we shall consider only the 
case Ao > ao. We assume that behind the shock 
u .. + A = 0, i.e., there is a stationary Alfven wave 
behind the shock. 

With 7J = pt/po, 7J = ij - 1, and 0"0 = J.I:yPo/B~ = 
a~/ A~, the state behind the switch-on shock is given 
by 

B',I = (2ij)i{(1 - 0"0) - !(oy - I)ij}i IBol, (8.Ia) 

PI = {l + "{ij(I - !("{ - I)ijO"o)}Po, (8.1b) 

U .. ,I = U .. ,o - jB .. I(.uPo)-i(7Ji - 7J-1) , (8.Ic) 

U.,I = IB .. I (.uPo)-i7J-i(2ij)i{1 - 0"0 - !("{ - l)ij}l, 

(8.Id) 

where the transverse velocity u, switches on in the 
direction similar to or opposite that of the magnetic 
field according as B .. < 0 or B .. > 0; and the shock 
speed 81 is given by 

81 = U .. ,o - IB .. I (.uPI)-l. (8.1e) 

[Relations (8.1) are slight rearrangements of formulas 
given by Bazer and Ericson.6

] 

The case of a small switch-on shock (B, r-.J 0) is 
of some interest, both because it gives insight into 
the more general case, and because such shocks may 
result from small disturbances. From this point, 
except where indicated, we shall confine our dis-

S J. Bazer and W. B. Ericson, Astrophys. J. 129, 758 
(1959). 



                                                                                                                                    

HYDROMAGNETIC SWITCH-ON SHOCKS 1515 

cussion to such small but finite switch-on shocks. 
It will be assumed that the perturbations are none­
theless small compared to the jumps across the 
switch-on shock. 

The jump across a small switch-on shock is given, 
to lowest nonvanishing order in B., the transverse 
field after the shock, by 

[u] ""' [B, cos 0, B, sin 0,0, -pBlp.pr i cos 0, 

where 

d Y = [2j.1(A 2 
- a2)r1

, an 
W == lY{3A

2 
- 4a2 + 2a2/('Y - I)}. 

(8.2) 

(8.3) 

The formulas from this point on are greatly sim­
plified if 'Y is taken, as usual, as i and we shall 
therefore do so. With this value for 'Y, for instance, 
W = 3A2Y/2. Note that except for B, and 0, the 
quantities in (8.2) and (8.3) may be evaluated on 
either side of the shock, to the given order of ac­
curacy. 

The jumps across the AHven shock depend on the 
angles Oa, Oz. Across the shock, 

and [B!] == [u,,] =: fp] = [p] == 0 
(8.4) 

[ul = (B.(cos O2 - cos OJ), 

0, -B,(sgnB.,)(cos 82 - cos Ol)/(p.p)i, 

- B,(sgn B.,)(sin O2 - sin Oz)/(p,p)i, 0, O}. 

A. Eigenvectors and Eigenvalues of a 
For the sake of definiteness, we shall assume from 

this point that B,. > 0. 
We give the eigenvectors of the matrix a in a 

coordinate system chosen such that B, == (p.P)tUI' 
With Cej: the slow and fast characteristic speeds, 
and A the Alfven speed, the eigenvectors of the 
matrix a are ordered according to the following list 
of the associated disturbance speeds: u., + c+, U" - A. 
US - c+, U", U" + C., u" - c., u., + A. Let C = cos 0, 
S = sin 8, h" = p.pe! - B!. The eigenvectors of 
a are given by 

R2 ,7 = {±S(p,p)f, ±C(p.p)i, 0, -pS, pC, 0, OJ; 

R1 •a = {p.c!CB" p.c!SB" h+(u", ± c+), 

±c+B",B,C + uuh+, ±c+B.,B,S + u",h+. h+, 

c+B~(c+ =F A) + h+[2a2 ± c+u.,] J ; 

R, == to, 0, u,,' uO', u., I, OJ. 

R 6 ,& are given in the formulas for RI ,3 with c+, 
h+ replaced by c_, h_. 

In order to compute the reflection coefficients at a 
small switch-on shock and in Alfven shocks where 
B, ,..., 0, it is convenient to use a basis of eigenvectors 
which do not vanish as B, ! 0. The eigenvectors 
Rt •. 7 == R2 ••• 7 are as given above; we replace 
Rl ,3.5.6 by eigenvectors RCa.6.s given to second order 
in B t by 

RLa == {(p,p)tc, (p,p)fS, 0, C(p - 2p.(A~B~ a2»)' 

( 
3B~) (pi p.)t } 

S P - 2p.(Ali _ all) 'All _ a2 ,BIE" J 

where 

and 

R' _ { -allCB, a2SBI 
5.6 - peAl! _ all)' peAl! _ a2) , 

aB~ 
±a - A =F 2p.p(A2 _ all) , 

( aA ) CBt ( aA ) SB. 
-1 =F All _ a2 (p,p>,"' -1 =F All _ a2 (p,p)i I 

1 2 II = A a(3A =F 2a)B~} 
, a -. a ± 2p.p(A 2 _ all) • 

The columns of the matrix Ql [partly defined by 
(2.1a)] are taken as the eigenvectors R~ (if Bt ,...., 0), 
or, more generally, R •. 

Assuming that in the state (1) u'" = -A, the 
characteristic speeds (eigenvalues of a) are, to second 
order in B" 

JA, -2A, -(2 + J)A, -A, 

a - A - aJ, -a - A + aJ, 0, 

where J == B:12p.p(A 2 
- 0.

2
). (To find the small 

disturbance speeds in a coordinate system traveling 
with the fluid, add A to each eigenvalue). 

9. REFLECTION COEFFICIENTS 

To lowest order in B t, the reflection coefficients 
S" T, at the AIfven and switch-on shocks from the 
region between are given by 

(All - a~ 
S2""" -4p.pS", CaB! ' 

1 
Sa""" 1 - C

ct 
I 

(9.1) 
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where 

(9.2) 

Here 

6 1 
ES,T,"-'I--

C
· 

"-2 IX 

(9.3) 

It follows from (9.3) that (6.3) can, in fact, be 
solved for arbitrary (62 - ( 1) if B, is sufficiently 
small. For, with a taken as constant in the state 
1 between the shocks, the jump conditions (6.1), 
(6.2) imply the pair of equations 

6 

al = kl + E a.S" (9.4a) 
.. -2 

(i > I), (9.4b) 

where k; are inhomogeneous terms depending on the 
incoming waves from outside the shock pair. Sub­
stitution of (9.4b) in (9.4a) yields 

a l = (1 - t S.Ti)-l(kl + t Sik,), 
.. -2 .. -2 

which is uniquely solvable provided 1-E S,T,~O. 
But limB ..... o 1 - E S,T. = C~t, by (9.3). Since 
C~l ~ 0, al is uniquely given. Now a, (i = 2, ... ,6) 
is determined by (9.4b), and the outgoing waves in 
the state (2) are uniquely determined by (6.2) and 
(2.5). 

As regards the applicability of Theorem 7.1, we 
observe that if 4/3a3 ~ A 2 ~ 16a2

, then 

E IS,T,I "-' 11 - I/C"I, 
so that in this case 

limB, 10 E IS,T,I < 1 if and only if 162 - 611 < l1r. 

10. AN UNSTABLE CASE 

According to the analysis in Sec. 7, there are two 
conditions under which stability of the system (7.10) 
with boundary condition (7.2) and given initial condi­
tion is hard to prove; firstly, when the Alfven wave 
is large (i.e., 161 - 611 large), and secondly, when 
E IS,T,I 2:: 1. To study the latter problem we shall 
consider a situation in which the unperturbed state 

between the two shocks is constant (6 == 61 == (1). 

We assume the incoming waves are of order E2, where 
E is the thickness of the wave, so that the geometry 
of the setup may be considered as given. Let the 
unperturbed switch-on shock at x = 0 and the un­
perturbed Alfven shock at x = - E be steady. 

The linearized equation and boundary conditions 
corresponding to (7.10), (7.2) are 

a, + Aaz = 0, -E < X < 0, 

a l = a'S at x = - E, 

a' = alT at x = 0, 

(10.1) 

(10.2) 

and the initial conditions are given by a(O, x) = 
ao(x) (-E < X < 0). 

Since the quantities a. are propagated as invariants 
along characteristics, it is easy to convert the initial­
value problem to a boundary-value problem with 
data of bounded support in t, by subtracting off 
the solution of (10.1) with the given initial condit­
tions in - E < X < 0, vanishing initial conditions 
elsewhere in x, and no boundary conditions. 

The boundary-value problem is explicitly solved 
through use of the Laplace transform. With d = 
f~ e-lTa(T)dT, the equation takes the form 

with boundary condition 

dl(-E) = d'·S + kl at x = -e, 

d'(O) = dl(O)T = k' at x = 0, 

(10.3) 

(1O.4a) 

(lO.4b) 

where (kI' k') is the Laplace transform of a vector 
having finite support in t, S = (0, SI, S2, ... ) and 
T = (0, T I , T2 , ••• ). 

With S = (-1, SI, S2' ... ) and 1') = (1, T I , 

T 2 , ••• ), the solution of the boundary-value prob­
lem (10.4) is given by 

dI(O) = (SeA -'''Tt l {kl - SeA -'''k'}, (10.5) 

together with (lO.4b) and the equation 

d(x) = e-A-"'d(Q). 

Suppose for simplicity that k' = 0, so that 

dI(O) = (SeA-'''Ttik i . (10.6) 

Lemma 10.1. Suppose 16.1 = 162 - 61 1 > !1r. Then 
there exists m = B~(6,,) > 0 such that to each 
B, < m, there exists T > 0 such that SeA -'uT = o. 

Proof. If T = 0, B, ~ 0, S·T -. -C~I > o. 
As T ~ co, independently of B" 
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cannot have a stable constant state between shocks, 
because of Theorem 10.1. 

which approaches - 00. By continuity, the lemma 
holds with B~ = info {B, I S·T = O} (here B~ may 
perhaps be infinite). Another conjecture is that the switch-on shock 

" breaks up into a combination of other shocks which 
Theorem 10.1. If 10al > In·, there exists B~(Oa) together resolve the initial discontinuity found across 

such that if B, > B~, the solution of the boundary- the switch-on shock. If true, it could mean that 
value problem (10.3), (10.4) increases exponentially not all small initial discontinuities can be resolved 
as t ~ co for almost all data. 

Proof. The solution for a l (t, 0) is given by the 
inverse transform of (10.6). Since the zeros of 
SeA -'.01' have some maximum value R of Re T, 

the inverse transform will represent the solution 
only if the path of integration is to the right of 
Re T = R. It follows that a l (t, 0) will grow faster 
than eel for all c < R, unless kl has a zero at each 
zero of SeA-'uT on the line Re T = R (note that R 
is proportional to E-

l
). 

DISCUSSION 

From the results of Secs. 9 and 10, it would appear 
that our ansatz leads in general to a configuration 
which is not weakly evolutionary. There is a possible 
remedy, however: it must be too much to ask that 
01 be constant to lowest order. If with given 01, 

O2, our setup is weakly evolutionary for at least 
one choice of 01 and Alfven wave, we may conjecture 
some dissipative or nonlinear mechanism under which 
the system will find such an appropriate state. 
Note here that even initially if 101 - 02 1 > !71", we 

0 2A 

by small shocks and centered waves, for the dis­
continuity across a small switch-on shock cannot 
be so resolved. In this case the hydromagnetic 
"piston problem" in which a magnetized piston is 
given a transverse impulse is not properly posed, 
for Bazer l required switch-on shocks to solve the 
problem. 

A possible alternative conjecture is that through 
dissipative or higher-order nonlinear effects, the fast 
and Alfven shocks will tend to coalesce and that the 
outgoing disturbances from the shock will remain 
small. In this case the composite jump condition 
(6.3) might yield a good approximation. 
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APPENDIX 1 

The matrix QQ;l A occurring in (7.9) et seq. is 
given to lowest order in B I, with terms of higher­
than-second order omitted, by 

0 0 0 0 

AJ 0 3AJ 
AB, AB, AB, 

2p(p.p)! 2p(p.p)t 2p(p.p)t 

0 -3AJ 
QQ;IA = 

0 0 

0 (Py AB, 
-; a(A - a) 

0 (Py AB, 
J.L a(A + a) 

Thus, in the steep Alfven wave, the non-Alfven dis­
turbances interact with the leftward-moving Alfven 
disturbance but not with each other. 

APPENDIX 2 

We shall derive two properties of switch-on shocks 
from general principles. We denote them by PI, P 2 • 

In particular, 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

PI: The shock speed coincides with the Alfven 
speed behind the shock. 

P 2 : To lowest order in the shock strength, the 
shock speed lies one third of the way between the 
fast disturbance speeds ahead of and behind the 
shock. 

Proof of Pl' Let 8 1 and 8 2 be two switch-on shocks 
having ahead of the shock the same state Uo, in 
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which U. == U. = O. Denote the states after the 
shock by Ul and ~ and suppose that Ul and U2 

differ only :in the orientation of the transverse com­
ponents of magnetic :field and fluid velocity. Denote 
by O. the quantity tan-1 B./BII in U, ( i = 1, 2). 

Subtracting the Rankine-Hugoniot relation for 
one shock from that for the other, we :find that 1$1 

and UJI may be connected by a shock traveling at 
the same speed $] as Sl and S",. Letting lOll - 011 ~ 0, 
we :find that $] is in fact a characteristic speed. 
Further, I] is the AHven speed, for the Alfven speed 
is the only shock speed which is independent of the 
shock strength. 

The proof of P 2 is a simple extension of the proof 
by Laxll that to first order, the speed of a shock is 
the arithmetic mean of the associated characteriStic 
speeds before and after the shock. 

Let the state before the shock be fixed, and denote 
it by UQ. In the state 1$1 after the shock, (J == tan-1 

(B./B1J) is fixed, and 1$1 depends on a single param­
eter E of shock strength, i.e., 1$1 = U(E), such that 
1$(0) = Un. 

For the fast disturbance speed A and the matrix 
a = iJI/iJu for the state 1$ will also be functions 
of E, as will the shock speed S. For convenience, 
coordinates are chosen such that A(O) = O. It will 
be assumed as known that at E == 0 and provided 
o < lui < Q:), $ "'" 8 = A = 0, and 8 ~ O. (Here the 
dot signifies dl dE. 

Let r be the right eigenvector of a such that 

(a - A)r = o. (AI) 

Property P2 is proved by comparing (AI) and its 
first two derivatives with respect to E with the :first 
three derivatives of the Rankine-Hugoniot oondi~ 
tion 

.all evaluated at E := O. (Except for the fact that in 
each case we consider one more derivative, our pro­
cedure is identical with Lax'S.3) In the following, all 

. quantities are evaluated at E = O. 
The derivatives of (A2) yield, after substitution 

of 0 for A, A, s, and 8. 

<lu "'" 0, (AS) 

<lu+G:u=O, (A4) 

a a/'u, + 2 da ,titt + d2
(j, du = 3 d

2
8 d'U • (A5) 

di! dt dl dl de dE'" dE 

(A.I) and its derivatives yield 

Ar =:; 0, (A6) 

Ar At = OJ (A7) 

(A - X)r + 2At + Af = O. (AS) 

(A.3) implies that u is proportional to r. By 
multiplying E by a ii'{ed oonstant we can aehiev"e 

(A9) 

Substitnting r for 'It in (A4) and subtracting the 
result from (A 7) I we find 

<l(u - f) == o. (AIO) 

Heuce proper choice of the parameter E ensures 
that 

U -T. (All) 

After substituting f for u in (AS), we multiply 
(A5) and (AS) by the left null vector of a, and sub­
tract one of the resulting equations from the other. 
There results 

8s - A = 0, (A12) 

8(1$ - 1$0) = t - to, (A2) from which property P2 follows inunediately, 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 6, NUMBER 10 OCTOBER 1965 

On Some Unitary Representations of the Galilei Group 
I. Irreducible Representations* 

J. VOISINt 

Physics Department, Syracuse Univeraity, Syracuse, New York 
(Received 11 February 1965) 

The true irreducible unitary representations of central extensions Gy of the Galilei universal 
co~ering group G and ~ence the physical representations of. G are constructed by Mackey's method 
of Induced representations. The elements of the representatIOn space X are obtained from functions 
defined on Gy and restricted to their values at one representative of each left coset of Gy modulo 
K where K is the induction subgroup. The physical interpretation of these functions is in terIns of 
wa~e functions and comes from the definition of a basis in X. This interpretation depends on the 
chOIce of a fundamental frame of reference in space-time and on the physical meaning given to a 
fundamental state. To a change of the representatives corresponds a change of basis in X. By a 
suitable choice of these representatives, we obtain in particular the momentum-spin representation 
and the momentum-helicity representation. The zero mass case named class II by Inonii and Wigner 
is then obtained by the limit process M -+ 0 applied to the helicity representation. 

INTRODUCTION 

SINCE the work of Wigner on the Poincare 
group, l the method of induced representations 

has received more and more attention in theoretical 
physics. Its most complete formulation can be found 
in Mackey's Chicago lectures.2 An introduction to 
Mackey's work has been given by several authors.3 
In particular, Wightman' has shown how the mathe­
matical arguments go for the Euclidean group, em­
phasizing the measure theory aspects and the com­
pleteness of the corresponding induced representa­
tions. Although more concise, an essential account 
of the Galilei group can be found in Wightman's 
work from the point of view outlined above. 

More recently another very elegant and useful 
introduction to Mackey's theory has been given 
by P. Moussa and R. Stora5 who apply this technique 
for reducing the product of two irreducible rep­
resentations of the'Poincare group and give at the 
same time general information about Mackey's the­
ory (in particular, about functions defined on a 
group which, as recently shown by Lur9at,6 are 
very important in the context of axiomatic field 
theory) . 

... Work supported by the U, S. Atomic Energy Commission. 
t Aspirant du Fonds National de la Recherche Scientifique 

(Belgium). On leave from the University of Liege (Belgium). 
1 E. P. Wigner, Ann. Math. 40, 149 (1939). 
I G. W. Mackey, The Theory of Group Representations 

(The University of Chicago Press, Chica"lo, Ilhnois, 1955). 
3 Besides the references 4 and 5 we mentIOn the lectures on 

"The Theory of the Lorentz Group" given by Chr. Fronsdal, 
R. Hagedorn, J. M. Jauch, and R. Tolhoek (CERN, 1959) 
A useful introduction to the method of induced representa.­
tions will be found in J. S. Lomont, Applications of Finite 
Groups (Academic Press, Inc., New York, 1959), Chap. V. 

4 A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962). 
& P. Moussa and R. Stora, preprint. 
• F. Lur9at, Physics 1, 95 (1964). 

We thought it worthwhile to develop for the Galilei 
group the point of view taken by Moussa and Stora; 
hence the present work. In order to emphasize the 
parallelism between Poincare and Galilei groups, we 
follow as much as possible the steps given by Moussa 
and Stora. We give however more importance to the 
irreducible representations, deducing the momen­
tum-spin representation and the momentum-heli­
city representation from a unifying point of view 
and emphasizing the physical interpretation. We 
use also the helicity representation to deduce the 
mass-zero representations (named class II by Inanu 
and Wigner3) by a limit process M -l> O. 

The Galilei group has been studied previously by 
several authors.7 Especially close to our work is the 
article by Levy-Leblond9 in which both the ir­
reducible representations (for M = 0 apd M ~ 0) 
and the l-S coupling are considered. With respect 
to this work, our originality lies (a) in the use of 
functions defined on the group and in the subsequent 
necessity of interpreting such functions, (b) in the 
new insight in the spectral decomposition of the 
representations with respect to the translations, (c) 
in the introduction of the helicity representation and 

1 E. Inonu and E. P. Wigner' have considered the true 
~epresentations and shown that they cannot be interpreted 
In a usual way. M. Hamermesh, Ann. Phys. 9, 518 (1960) 
has studied the physical interpretation both of the true 
repre~entations and o.f the projective representations, using 
the LIe Algebra techmque. E. C. G. Sudarshan in his lectures 
on Principles of Classical Mechanics, Report NYO-10250 
(Rochester,. 196?) gives some interpretatIOn to the true 
representatIOns In the frame work of classical mechanics 
A. ~ing~r, Ann; Phys: 20, 132 (1962) shows that the only 
phYSICal IrreduClble Hilbert representations of the proper 
Galilei group are those corresponding to the free particle 
Liouville Equation. See also references 4 and 9. 

8 E. Inonii and E. P. Wigner, Nuovo Dimento 9, 705 (1952) . 
t J. M. Levy-Leblond, J. Math. Phys. 34, 845 (1962). 
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its use in the study of the mass zero case and of the 
couplings, (d) in the unification of the different 
schemes (momentum-spin, momentum-helicity) ob­
tained from Mackey's work. 

The present article is devoted to the irreducible 
unitary representations of those central extensions 
GM of the Galilei universal covering group which 
according to Bargmann's theoremtO give the pro­
jective unitary representations of Galilei covering. 
group. In the first section, we recall the usefulness of 
projective representations and Bargmann's theorem. 
In Secs. II and III, we construct the irreducible 
representations of GM by Mackey's method. Section 
IV is devoted to the physical interpretation. In Sec. 
V we introduce the momentum-spin representation 
and the momentum-helicity representation and in 
Sec. VI we use this latter representation to study the 
mass-zero case. 

The reduction of direct products of two representa­
tions will be considered in another article. 

I. CENTRAL EXTENSIONS OF THE GALILEI 
COVERING GROUP. 

Physically the Galilei group is the group of trans­
formations relating the classical frames of reference. 
It contains the rotations R, the accelerations v, the 
translations in space a and in time b. The elements 
of the group will be denoted by 

(b, a, v, R) 

and the multiplication law is 

(ba, aa, Va, R2)(bl • aI' Vl, R t ) 

= (ba + bt • aa + va·b l + R2al , Va + RaVI' RaRI)' 

The coveribg group is obtained by replacing the 
rotation R by the elements of the group SUa. 

Since quantum mechanics does not fix the phase 
w of the vector describing a pure state, and then as­
sociates to such a state a ray rather than a vector, 
the projective representations become essential when 
we study the symmetry properties of a quantum 
system. Wigner has shown9 that the projective 
unitary representations of the Poincare group <P can 
be reduced to unitary representations up to a sign 
and thus in this case we may limit ourselves to the 
true representations of the universal covering group 
of <P. But in the case of the Galilei group, such a 

10 V. Bargmann, Ann. Math. 59, 1 (1954). A very useful 
account of that work can be found in M. Hamermesh, Group 
Theory (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1962), Chap. 12. See also T. D. Newton in 
T. Kahan, Th~orie des Groupes en Physique Classique et 
Quantique (Dunod & Cie., Paris, 1960), Vol. 1 Part II, 
Chap. III. 

simplification does not occur. There is indeed a one­
dimensional infinity of projective representation clas­
ses which cannot be reduced to the true representa­
tions.lo They are characterized by the factors 

",(ba, aa, Va, Ra; bt , aI, VI. R I ) 

= exp [i(M/h)] (va,Raal + tV~bl) (1) 

where the parameter M can run from - <X> to + <X> • 

The important fact is that these projective rep­
resentations are the only ones to which we can at­
tribute a usual physical meaning. 7 

Another important fact is that the projective rep­
resentations of type M can be deduced from the 
true unitary representations of a group GM which is 
a central extension of the Galilei universal covering 
group by a one-dimensional Abelian group.ll This 
eleven-parameter group GM is defined as follows. Its 
elements are denoted by12 

(exp ie, b, a, V, R), 

with the multiplication law 

(exp i8a, ba, aa, V2, Ra)(exp i81, bl , aI, VI' RI ) 

= {exp i[8a + 81 + (M/h)(v2 ,R2al + tv2 bl )], 

X ba + bl , aa + v2 bl , Va + Ravl , RaRd· (2) 

The relation between the projective representa­
tions "M" of G and the representations of GM is 

U(exp i8, b, a, V, R) = exp i8· U(b, a, V, R). (3) 

We will often write (exp i8, b, a, V, R) as (exp i8, 
a, r), a replacing both b and a, and r replacing V and 
R. The multiplication law is then 

(exp i8a, a2, r 2)(exp i81• al> r l) 

= {expi(02+01)·",(r2,al),aa+r2al,r2rd. (2') 

The notation ",(ra, al) for ",(aara; aIrl) is suited to 
express the fact that, M being given, w depends on 
nothing but the homogeneous part of the left factor 
and the translation part of the right factor in the 
product. 

In particular we have 

(exp i8, a, r)-l = [exp i( - 8)'''' -I(r, a-I), 

-b, -R-1(a - bY), -R-1v, R- I ] 

with 

",-I(r, a-I) = exp (-iM/h)(-v·a + tbv2
). (4) 

Let X be the symbol for the semidirect product. 
11 V. Bargmann, Ref. 10. 
12 Here and in the following, we will denote by R the 

elements of SU2 for sake of simplicity in the interpretation. 
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Then the structure of G M may be written asl3 

GM = T X (V X R) = T X ..:.\, 

where T is the normal subgroup {(exp ie, a, I)} 
formed by the subgroup of space-time translations 
and the one parameter central subgroup; V is the 
subgroup of pure Galilei transformations (V is the 
maximal invariant three-parameter subgroup of 
GMIT); R = SU2 = GMITIV is the unitary uni­
modular two-dimensional group. It is simple. 

We are going to study the representations of the 
GM's. The general problem is to relate any rep­
resentation to simpler ones. This problem is twofold 
involving: 

1. The relation of the irreduciblel4 unitary rep­
resentations of GM to those of simpler groups and 

2. The relation of any given representation of 
GM to the irreducible unitary representations of 
GM itself. The first aspect is studied in the present 
paper. The latter one will be considered in a second 
article. 

n. THE SUBGROUP K = T X R(Qo7J.) AND 
ITS REPRESENTATIONS 

The concept of induced representation of GM is a 
relative one; it refers to a subgroup K of GM and to 
a representation of this subgroup. Any subgroup 
of GM can be used to induce a representation. How­
ever, if we want to get the irreducible representations 
of GM , the subgroups to be taken are of the type 
T X R(o.".), i.e., they are semidirect products of 
the subgroup T with some little group R(o.".). 

1. The Abelian Normal Subgroup T and Its 
Unitary Irreducible Representations 

The unitary irreducible representations of the 
Abelian subgroup T are one-dimensional and given 
by 

(exp ie, a I q, p) = exp i[qe + h-I(Eb - p·a)]. (5) 

Hence they are characterized by the numbers (q, p). 
We call any unitary irreducible representation of 

T a "character" of T. The characters of T form a 
group, the so-called character group T of T. 

2. Automorphisms and Orbits of T 

Each element of the homogeneous subgroup ..:.\ 

represents both an automorphism of T and an auto­
morphism of T. 

The automorphism induced in T by the element 
r belonging to ..:.\ is given by 

(exp ie, a, 1) ~ r(exp ie, a, l)r-1 

= {expi[e + (M/h)(v·Ra + !~b)], ra, I}. (6) 

The corresponding transformation r- l in T is 
defined by requiring that the transformed character 
evaluated at the point (exp ie, a, 1) be equal to the 
former character at the point r(exp ie, a, l)r-t, i.e., 

(exp ie, a I q'p') = (exp i[O + (MIll,) 

X (v·Ra + !v2b)], ra I q, p). (7) 

Hence r- l induces the following transformation of 
the characters 

q~ q, 

E ~E - p'V + !qMv2
, 

P ~ R-1(p - qMv) , 

and obviously r induces the transformation 

q~q, 

(8) 

E ~ E + Rp·v + !qMv2
, (8') 

p~Rp + qMv. 

Let us point out that the transformed character has 
same q part as (q, p) does. 

These induced automorphisms in 'i' allow us to 
split T into orbits in putting in the same orbit all 
the characters (q, p) such that given any two of them 
(qIPI) and (q2P2) there exists an element r belonging 
to ..:.\ transforming (qIPI) into (q2P2), i.e., 

(q2P2) = r[qIPI]' 

3. Little Groups 

Let us call little group of G M every subgroup of ..:.\ 
leaving invariant at least one character (qoPo) and 
consider the little group R(o.".) corresponding to 
(qoPo), i.e., the set of r's such that 

r[qopo] = (qoPo). 

We thus have from (8) 

Po = Rpo + qoMv, (9.1) 

(9.2) 
13 See for instance J. M. Levy-Leblond Ref. 9. 
14 Irreducible representation will have in the present work . 

the general meaning of representation where Schur's lemma I.e., 
holds,i.e. where any operator commuting with all the elements 
of the representatlOn is a multiple of the identity. A more Po = Rpo + qoMv, 

Rpo'v = -!qoMv2, 
precise (and more correct) term would be primary repre­
sentation. 

(9') 
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as seen by multiplying (9.1) by v and taking (9.2) 
into account. From (9.1) we get v in terms of Rand 
(qoPo). Hence the little group of a (qoPo) Po[(9') shows 
(qoE) does not matter] consists of all r = (v, R) 
of the form 

(10) 

and is isomorphic to the unitary unimodular SU2 • 

4. The Subgroup T X R( •• ".) and Its Representations 

The semidirect product 

(11) 

is a subgroup of G M and is closed. We can get a 
unitary irreducible representation of K if we are 
given an irreducible unitary representation of 
R( ) = Ro. Let D be such a representation of 0'02'0 

Ro. To the element16 (exp iO, a) X ro E T X Ro, let 
us associate the matrix 

L(exp iO, a, ro) = (exp iO, a I qoPo)D(R), (12) 

where (exp iO, a I qoPo) is the representation of 
(exp iO, a) in the character (qoPo) and D(ro) is the 
representative of [q;;-IM-1(po - Rpo), RJ in D. The 
identity (12) defines obviously a representation of 
K. 

m. REPRESENTATION OF ~ INDUCED BY 
THE IRREDUCmLE UNITARY REPRESENTATION 

L OF K. 

Let us now determine the representation of GM = 
T X ..:l induced by the representation (12) of the 
subgroup K. 

1. Construction of the Induced 
Representation Hilbert Space. 

We proceed in two steps. 

Equivalence Classes or Left Cosets of GM mod K 

Two elements gl = (ql,al, r 1), g2 = (q2, a2, r 2) are 
in the same left coset of G M mod K if and only if 

g;lgl E K, 
i.e., 

r;lr1 E Ro 

since belonging to K imposes no restriction on the 
translation part of the arguments. 

Hence gl and g2 are in the same left coset if and 
only if their components r 1 and r 2 transform the 
character (exp iOo, Po) in the same way. For 

r;lr1 E Ro 
16 We write (exp iO, a) for (exp iO, a, 1). 

¢:::> rl[exp iOo, Po] = r 2[exp iOo, Po] (13) 

The following theorem holds. 

Theorem. There is a one-to-one correspondence 
between the characters belonging to the orbit of 
(qo, Po) and the left cosets of GM mod K. 

This theorem enables us to label the cosets by the 
characters equivalent to (qoPo). Let us point out that 

E - p2 12M qo = Eo - p~/2M qo = Uo (14) 

so that the internal energy is the same in all the 
states of the corresponding primitive system. Note 
also that the independence of Ro with respect to 
(qoEo) is related to the freedom left in the choice of 
the internal energy. 

Definition of the representation space X(GM ) 

Let us consider a set of functions of domain G M 

satisfying the following covariance property. 

f(gk) = f(g)L*(k) 

in which g is any element belonging to GM and k any 
element of K. The symbol* means complex conjuga­
tion. With the previous notations, we have more 
precisely for the covariance property 

f[(exp iO, a, r)(exp iO', a', R')] 

= f(exp iO, a, r)L*(exp iO', a', R') (15) 

where 

(exp iO', a', R') E K. 

As a result f will be completely characterized if we 
are given its value for one (arbitrary) element of each 
coset.1e 

The above discussion leads us to pick a particular 
element g(qop) from each coset. For that purpose, 
let us first associate to each r a particular r ( •• ,,) = r" 
such that 

r[qopo] = (qop) = r,,[qopo]. (16) 

r" is thus the same for all the r's such that 
r[qopo] = (qop). We then take (formally, see Sec. V) 

(1,0, r,,) 
as the representative of the coset (qop) for any p(qo 
might be taken-and will be later taken-equal to 
one without any loss of generality). 

On the other hand as (qoEp) on the orbit of 
(qoEoPo) clearly indexes leftcosets of GM mod K we 

16 The domain of f is thus strongly connected with the 
orbit of (qoPo). Note however th8:t f is n?t a constant on a 
given coset. Such a constant WIll be gIven, e.g., by the 
function (f(g), f'(g». 
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may choose as invariant measure on the coset space 
the invariant measure 

orE - p2 /2M qo - (Eo - p~/2M qo)] dE dp 

= dOu.(E, p). (17) 

We then suppose that the functions f defined above 
have the following property: their restriction fer ,,) = 
/(1, 0, r 1') to the representatives (1, 0, r 1') form a 
Hilbert space with respect to the scalar product 

f dnu.(p)f't(r.,)f(r,,). 

We take this space as representation Hilbert space 
5C(OM)' 

2. Representation of ~ in 5C{~) 

To define U(exp i£J, a, r) we give the value of Uf 
at the points (1, 0, rp) according to the following 
law 

[U(exp i£J, a, r)f](r,,) 

= f[(exp i£J, a, rrl(l, 0, r ,,)] (18) 

Indeed as a result of the invariance property (15), 
the second member of (18) can be expressed in terms 
of the value of f at some point (1,0, r p') For let us 
put the argument (exp i£J, a, r)~l(l, 0, rp) into the 
product form (1,0, r",) X k where k E Ro. We first 
note that 

(exp i£J, a, rrl(l, 0, rp) = {exp i[-£J + (M/h) 

X (v·a - !bv2
)], -r-1a, r-1rp} 

and that this argument belongs to the coset r-1[qop]. 
For 

r1rp[qopo] = r-1[qop] = [qop']. (19) 

Hence if we multiply r-1r l' from the left by r-;~ the 
result will belong to the little group Ro. This suggests 
proceeding in the following way. We write 

(exp i8, a, rrl(l, 0, r,,) 

= (1,0, r".)(l, 0, r-;!)(exp i£J, a, rrl(l, 0, r,,) 

= (1,0, r",)(l, 0, r~~) 

X {expi[-£J + (M/h)(v·a - !bv2
), -r-1a, I} 

X (1,0, r",)(I, 0, r~!r-lr,,). (20) 

The second member of (20) is obviously of the form 
(1, 0, r p.) X f{) where f{) E T X Ro so that we get 
from (18) 

[U(exp iO, a, r)f](rp) = f(rp,)L*('P) 

= L('P-1)f(r p.). (21) 

Now 

L(f{)-l) = «1,0, r-;!){exp i[£J - (M/h) 

X (v·a - !bv2
)], r-1a, I} 

X (1,0, r p') I qopo)D(r;lrr",) = T·D(r;lrrp ')' 

On the other hand according to (6) and (7) 

T = (exp iO, a I qop) (22) 

so that we eventually get the following representa.­
tion of OM: 

[U(exp i£J, a, r)f](r,,) 

(23) 

in complete analogy with the Poincare group. 
This result is true for any representative r p' We 

will consider later two important choices for r p' 
Such a consideration is not trivial from a physical 
point of view since a change of representatives leads 
to a new representation of OM which is equivalent 
but not identical to the former one. 

IV. PHYSICAL INTERPRETATION. CHANGE OF 
REPRESENTATIVES AND EQUIVALENT 

REPRESENTATIONS 

1. Basis in 5C(~) 

The physical interpretation of fer p) is in terms of 
wave functions. 

Let us make a particular choice for the little 
group and take (M ¢ 0) 

(Eo, Po) = (Eo, 0). 

As the particular value chosen for qo does not matter, 
we will omit writing it in this section. The little 
group Ro is now the group SU2 and D is an ir~ 
reducible representation of SU2 • Let us then index 
the matrix elements of D by integer or half integer 
numbers s, s' and let us introduce a non~normalizable 
basis 

Ir.,s) (25) 

of a Hilbert space and states (summation convention 
for s) 

lei» = f dnu.(p)f.(rp) Ir"s). (26) 

The orthonormality condition is 

(rps I rp's') = Og.(P, p')o .. , (26) 

where o(p, p') is the invariant 0 function on Eo = 
E - p2/2M 

f dnz.(p')Og.(p, p')f(P') = f(P), (27) 
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This implies 

(t/ll cf» = J dOE.(P') dOE.(p)f':~(r,,')f.(r,,) 

X (r",S' I r pS) 

= J dOE.(P)f'~ (r,,)f.(r,,). 
Now rt(r,,)f(r,,) depends on p only since from (15) 

f't(r;)f(r;) = f't(r )l)f(r)l) 

= rt(r.,)f(r,,). (28) 

Hence 

(tf; I cf» = J dOE.(P)( VII ip)(P). (29) 

2. Covariance Property in Terms of the Basis and 
Equivalence of Representations 

The interpretation of (28) is in terms of equiva­
lence of the representations corresponding to dif­
ferent representatives. 

To see this let us consider the covariance law (15) 
for the wavefunctions and its correspondent for 
the states. We get the latter one as follows. Let 
Icf» be developed in terms of the I r "s) and of the 
I r;s') respectively where r; belongs to the same 
coset as r" does. 
We have 

Icf» = J dOH.(p)f.(r.,) Ir"s) 

= J dOg.(p)f.,(r;) Ir;s') (30) 

and 

r; = r)l, 

where 

Hence 

fer;) = fer ,,)D*(R) 

= f(r,,)D*(r;lr;). 
In terms of components 

f.,(r;) = f.(r,,)D~.,(r;lr;) (31) 

(30) and (31) give then 

Icf» = J dOgJp)f.(r,,) Ir.,s) 

= J dOE.(p)f.(r.,)D~ •. (r;lr;) Ir;s'). 

Hence 

Ir"s) = D~.,(r;lr;) Ir;s') 
= D:-,~(r;lr;) Ir;s') 

and eventually 

Ir;s') = Ir"s)D •• ,(r;lr~). (32) 

This result may then be interpreted as follows: 

A change r., -t r; in the representatives of the cosets 
results in the change of basis 

Ir"s) -t Ir;s) 
given by (32). This transformation law (32) is the 
covariance property for the states. 

Now we see that with this interpretation, (28) 
expresses the unitarity of the transformation law, as 
expected. 

3. Physicallnterpretation17 

So far the functions f and the states Irps) are for­
mal expressions. To get a physical interpretation, we 
have to give a meaning to the symbols r" and s in 
Ir"s). For that purpose let us first of all choose a 
particular frame of reference Fo (e.g., the laboratory 
system) and associate with the transformation r = 
(v, R) the frame rFo which has the velocity v with 
respect to Fo and is parallel to the frame deduced 
from Fo by the rotation R (Axiom I). As a result, 
v and R in r are now to be interpreted as a velocity 
and a rotation in the frame Fo. We note that the 
first axiom is very general and does not depend on 
M (either ¢O or =0). A second general axiom will 
consider the characters (E, p) as representing the 
linear momentum p and the energy E of the system 
(Axiom II). The further requirements depend on 
GM and the representation of GM associated with the 
particle. 

We consider the case M ¢ 0 and we first complete 
the physical meaning we give to Ir"s) when we write 
the symbol p. Let (Eo, 0) be the character corre­
sponding to the little group defining the representa­
tion we deal with. To r we associate the 4-momen­
tum 

(E, p) = r[Eo, 0] = (Eo + p2j2M, P = Mv) 

and we then interpret Ir, s) (for any s) as a state of 
momentum p and energy E (Axiom III). Now the 
state 11, s) (any s), in which, from the latter axiom, 

17 The following discussion is somewhat incorrect since we 
are dealing with the Galilei covering group and not directly 
with the Galilei group. The idea underlying the argument 
has been suggested to us by reading the article by LurQat 
quoted in Ref. 6. See also Ref. 18. 
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the particle has momentum 0 and energy Eo, is also 
interpreted as a state where the particle is at rest 
in Fo(v = 0) (Axiom IV). 

The representation of r", in the basis I r"s) is 

since 

u(r".) Ir"s) = Ir "s')D.,.(r~lr",r,,) 

7r = r",[p] 

U(r",) 141) = J dOE.(p)f.(r")U(r,,,) Irps) 

= J dRe.(P)f:,(r,,) Irps'), 

and from (23) with 7r' = r;~[p] 

f~,(r,,) = D.,.(r;lr",r .. ,)f.(r .. ,). 

(33) 

It then results from (33) and our former axioms that 
if we impart a velocity v and a rotation R to the 
particle initially in the state lIs), the particle will 
get the momentum 

p = Mv (34) 

and the energy 

(34') 

Hence when the particle has the velocity v in Fo, its 
momentum and its energy are completely deter­
mined by (34), (34'). On the other hand as the frame 
F = r"Fo has the velocity v too, we see that F is a 
system in which the particle is at rest when in the 
state Ir"s) with respect to Fo. 

The result of the above discussion is as follows: 
given a laboratory system Fo, Ir(E.,,)S) is first of all 
to be considered as symbolizing a state in which the 
particle has energy E, momentum p in F o. 

We now consider the interpretation of s. It will 
depend on the form of r". Let us study successively 
the states lIs), IRs), Irs) where r" is a pure Galilei 
transformation, and Ir~s) where r~ contain a certain 
rotation. 

(a) The States 11, s) 

We know that they correspond to a frame parallel 
to Fo (it is Fo itself) and to a particle at rest in Fo. 
Hence they give a basis for the possible states of 
the system when it is at rest in Fo• 

On the other hand if we apply a rotation R to 
lIs) (i.e., if the system initially in the state lIs) is 
submitted to the rotation R) we get from (33) 

U(R) lIs) = 11s)D!,.(R). (35) 

Hence the vectors lIs) constitute a basis for the 

j-representation of the rotation group associated 
with Fo. As a result s can be interpreted as labeling the 
eigenvalues of the projection S· e;; on e;; of the angular 
momentum of the system at rest in Fo (s then takes our 
choice of F ° and in particular of ea into account). Now 
the meaning of (35) is the following. If we apply a 
rotation to the system initially in the state jls) the 
resulting state is no longer an eigenstate of Sa but a 
superposition of such states. Computing the mean 
value of S·Rea in the state U(R) jls) we see that 
it is equal to s. In this state it is this projection and 
not S'e3 which is equal to s. In particular if s is the 
maximal value of Sa we may say that in the state 
118) the spin is parallel to ea. Then in the state 
U(R) lIs), the spin is parallel to Rea. R has as the 
effect of rotating the spin through (J about n where 
nand (J are the axis and the angle of R respectively. 
These results are obviously well known. All that we 
do is to get them again from our point of view. 

(b) The States jRs) 

It results immediately from (32) that 

IRs) = 11s')D.,.(R). 

Comparing this result with (35) we thus have 

IRs) = U(R) lIs). 

(36) 

(37) 

Hence according to the discussion following (35), 
jRs) can be interpreted as a state in which the system 
has momentum zero [since (0, R)[Eo, 0] = (Eo, 0)] 
and has s as projection of its Fo -spin on Rea. In 
particular if s is maximum the spin is parallel to 
Rea in the state IRs) 

Let us note that if we adopt the passive point of 
view and change the fundamental frame from F 0 

to RFo, the state IRs) will obviously become a state 
lIs). 

We emphasize also the fact that to interpret 
IRs), we reduce it to the states lIs'). 

(c) The States Ir"s) where r" is a pure Galilei trans­
formation 

In such states the particle has energy E and mo­
mentum p; the associated frame is parallel to Fo 
and moving with the velocity v = p/M. 

According to (33) we have 

u(rp) lIs) = Ir"s}. (38) 

As r" contains no rotation (pure case) the only 
possibility given by this formula (38) for the inter­
pretation is to identify s in Ir"s) to s in lIs). We 
then adopt the following interpretation: Ir"s) is a 
state in which the system has energy E, momentum 
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p and the same orientation in F 0 as it has in the state 
11s}. (Axiom V). 

From a passive point of view, Ir:ps) is in Fo that 
state which viewed from the frame r.,F 0 is of the 
type lIs). 

(d) The Stateslr;s) where r; contains a Rotation 

We restrict ourselves to the case where 

(39) 

where r:p is of the type discussed in (c), and Rp is the 
rotation of axis rea, p], and angle 8 equal to the small­
est positive angle between ea and P; Pa is the momen­
tum (E, Iplea). 

In the present case, r; involves the pure trans­
formations (b) (rotation) and (c) (pure Galilei trans­
formation). We may then hope to get the interpreta­
tion of Ir;s) from the one we have adopted for the 
previous cases. 

First of all r; is associated to a frame moving with 
the velocity p/M in Fo and Ir;s) corresponds to a 
particle having momentum p and energy E in F o. 

On the other hand we have from (33) 

u(r;) lIs) = Ir;s) 

and thus from (39), (37) 

(40) 

U(r:p)U(R) lIs) = U(r:p) IRs) == Ir;s). (41) 

Hence since according to (c) we give the same inter­
pretation (the same nature) to the quantity s ap­
pearing in two states IRs), lAs) which are related 
by a pure Galilei transformation, we have as first 
result: the system in the state Ir;s) has the same 
orientation with respect to F 0 as it does in the same 
frame when in the state IRs). 

Now the orientation in the state IRs) is defined in 
(b) in terms of the projection of the spin on Rea. The 
interpretation of s in Ir~s) is then complete. As 
R = Rp the quantity 8 in I r;s) amounts to the pro­
jection of the spin on the direction of motion p. If s is 
maximal the spin of the state Ir;s) is parallel to the 
direction of motion. 

An important remark is here in order: s can also 
be interpreted as the projection on p of the total angular 
momentum in the state Ir;s). This result is crucial 
as far as the comparison with the zero-mass case is 
concerned. 

Obviously the passive interpretation is in terms of 
the frame F = r;Fo the third axis of which is parallel 
top. 

The states Ir;s) where the rotation component of 
r; is Rp are the so-called momentum-helicity eigen-

states. IS If the rotation component is different from 
the latter one, the corresponding state will be a. 
superposition of helicity eigenstates. 

(e) Conclusion 

The spin of a system (M =;6 0) as actively defined 
above is a relative concept referring to some parti­
cular fundamental frame Fo through a basic 4-mo­
mentum (Eo, 0) (little group dependence). The spin 
gives the orientation with respect to Fo of the system 
at rest in Fa. StUdying the Fa -spin is equivalent to 
studying in F 0 the angular momentum of the system 
at rest. And indeed we have reduced any state 
lAs) to states of the type lIs) or to superpositions 
of such states in order to interpret their 8 -depend­
ence. The reduction has been performed by admit­
ting as an axiom the identity of the "8" in two states 
IRs), lAs) related by a pure Galilei transformation. 
In the helicity states, s may also be interpreted as 
the projection on p of the total angular momentum. 

A passive interpretation involving the frames 
F = r F 0 can be developed in a manner parallel to 
the active one we gave above. 

With the conventions introduced we know now 
how to read the physical content of the notation 
Ir:ps). The following are meaningful: on the one hand 
the character p giving the momentum and the energy 
and on the other hand the number s as well as the 
rotation component of r" giving the orientation of 
the particle. 

V. TWO PARTICULAR REPRESENTATIONS OF 
G;v(M ~ 0). 

We are going to give the explicit expression of the 
representation (23) of G M in two partiCUlar basis 
of the Hilbert space X(GM ). We take (qoPo) = 
(1, Eo, 0) and the representation i for the little 
group SU2• 

1. Preliminary Remarks 

First of all we want to point out that the matrix 
D appearing in (23) may be written as 

W(riP) 

to express that in a concrete representation of GM 

the only variables are rand p. Naturally the func-
18 The concept of helicity state has been especially well 

defined .by M. Jacob and C. G. Wick, Ann. Phys. 7, 404 
(1953), In particular with respect to the phase determination. 
The presentation of the helicity representation in relativistic 
theory.is 9:lBo very .clear in the article by. V. 1. RituB, Zh. 
Eksperlm. 1 Teor. FIZ. 40, 352 (1961) [EnglIsh transl.: Soviet 
Phys.-JETP 13, 240 (1961)]. The main points of our discus­
sion are to work in nonrelativistic theory and to make more 
explicit both the axiomatic aspects and the deductive aspects 
of the usual interpretation. 
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tion W itself depends on the little group, on the 
representation of this little group and. on the rep­
resentatives which together fix the given induced 
representation. 

On the other hand, as in a particular representa­
tion, the representatives of the cosets are fixed, 
it is convenient to write fer ,,) as 

(42) 

where the function 8 depends on our choice of the 
representatives according to (42). 

It is also convenient here to use the usual notation 
exp i(8 + h-1p·a) for (exp i8, alI; p). With these 
notations, (23) becomes (we take the components) 

[U(exp ie, a, r)e] .. (p) 

(43) 

where u, u' = (j, i-I, ... , - i) have so far no 
physical interpretation. (43) can also be written as 
follows 

[U(exp ie, a, ne] .. (p) = J dQE.(Pfl) 

U(exp ie, a, r) lp, u) 

= exp i(e + h-1rp.a) Irp, u')w .. ·uCr; rp). (46) 

2. The Momentum-Spin Representation 

The momentum-spin representation is defined by 
taking as representatives for the left cosets of GM 

mod K the pure Galilei transformations r .. 
r .. = (1,0, p/M, 1). (47) 

We naturally have (qo = 1) 

r .. [Eo, 0] = (Eo + -t/2M, p) = p. 

For the sake of definiteness, we adopt in the present 
case the following notations 

wcr; p) ~ Q(r; p), 

u~s, 

e(p) ~ q;(P). 

Now according to (23) and the present conventions 
(pI = r-1p), 

[Q(r; p)] •• , = D! •. (r;lrrp ')' (48) 

From (47) X exp iC8 + h-1rpfl 'a)W(r, rp") .... " 

X IJE.(P", r-1p)e .. " (P"). (44) r;lrrp ' = (-p/M, l)(v, R)[R-1(P - Mv)/M, 1]. 

Now let us express this result in terms of the basis 
vectors. We have 

e .. (p) = (p, u I e) 

and 

(ue) .. (p) = (p, u I Ue) 

= (p,u lUI p', u')(P', u' Ie), 

where 1/1) is the state described by e .. (p) in the basis 
Ip, u). 

Hence according to (44) 

(p, 'U lUI p', u')(P', u' I e) 

Hence 

(49) 

and 
(Q(r; p)] •• , = D! •. (R). (50) 

We thus have the following theorem. 

Theorem. In the momentum-spin representation, 
the irreducible unitary representation of GM cor­
responding to spin i and rest energy Eo can be written 
(qo = 1) 

[U(exp i8, a, r)q;].(p) 

= exp i[e + h-1(Eb - p.a)]D!.,(R)q;.,(r-1p), (51) 

= exp ice + h-1rp"·a)W .... ,,(r, rp")(p", u" I e) where Di(R) is the i-representation of SU2 in the 

and the orthogonality property of the basis then abstract basis (r,Ja) and p varies on the orbit of 
the character (Eo, 0), i.e., gives 

(p, u lUI pI, u') = exp i(/I + h-1rp"a) 

Now as 

U Ip, u) = Ip', u')(P', u'l U /p, u), 

we get from (45) the transformatian law of the basi8 
stateslpu} under GM 

E - p2/2M = Eo 

Let us point out however that so far, 8 has not 
been interpreted physically. But as the basis of the 
present representation (51) is Ir,,8), where rp con­
tains no rotation, the discussion of Sec. IV.3(c) 
immediately applies and 8 is to be considered as the 
projection of the intrinsic angular momentum on the 
axis ea of our laboratory system Fo. 
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Now according to (46) the transformation law of 
the basis vectors is 

U(exp ifJ, a, r) Ip, s) 

= exp i(e + h-1rp'a) Irp, s')D!,.(R). (52) 

Hence under the transformation (exp ie, a, r) the 
spin is not affected by the velocity component and 
is rotated by exactly the rotation component R. 
Such a result is not true however for the linear 
momentum since under (exp ie, a, r) 

p~p' = Rp + Mv. (53) 

Hence p' = Rp if and only if either v = 0 or v is 
parallel to Rp. 

Under the action of (exp ie, a, r) the spin and the 
momentum are generally rotated differently. If v = 0 
or if v is parallel to Rp the rotation is the same both 
for S and for p and is equal to R. As a result a system 
initially in a helicity eigenstate will not be any more 
in a helicity state after a transformation (exp ifJ, a, r) 
with v not satisfying the conditions above. 

3. The Momentum-Helicity Representation 

Instead of taking the pure Galilei transformation 
r:ll to represent the left cosets, let us take the ele­
ments 

r~ = r,ftp = Rpr". 

with the notations of Sec. IV.3(d). 
We have from (47) 

r~ = (1,0, p/M, Rp). 

We will write here 

W(r; p) ~ S(rj p), 

u~u. 

8(P) ~ if/f:p). 

(54) 

(55) 

Let us recall that u and s have same numerical values; 
taking different notations for these two quantities 
takes into account the difference in nature which we 
are going to find between them. 

The corresponding representation for GM is ac­
cording to (43) 

[U (exp ie, a, r)if/] .. (p) 

= exp ice + h-1p.a)[s(rj p)] .... ,if/ .. ,(r-1p). (56) 

The relation of (56) to (51) is easily obtained since 
from (23) (48) (54) and our conventions for the little 
group (p' = r-lp) 

[S(rj p)] ... , = D!.,(r;-lrr;,) 

= D!.(R;l)D!.,(R)D!, .. ,(Rp ') (57) 

and hence 

[s(rj p)].", = D!.(R;l)lQ(rj p)] .. ,D! .• ,CRp ')' 

Where 
p' = R-1(p - Mv). 

(58) 

As to the interpretation of this new representa­
tion, the considerations of Section IV.3(d) give us 
immediately the following result: the basis vector 
Ipu) is the state of momentum p and helicity u, i.e., 
the state Ir;u). 

Given the basis Ips), the transformation law to the 
basis Ipu) is obtained from (41) and (52). We have 
(u = s numerically) 

Ipu) = VCRp) Irp.s) 

= !ps')D!,.(Rp). 

Finally we write the general transformation law 
under GM of the states Ipu) which we deduce from 
(46) 

U(exp ie, a, r) Ir-1p, u) 

= exp i(e + h-1p·a) Ip, u')S ••• (ri p) (59) 

with the formula (57) for S.' •. 

VI. MOMENTUM-HELICITY REPRESENTATION 
AND MASS-ZERO CASE 

It is well known in Poincare group theory that if 
we take M = 0 in the irreducible momentum-spin 
representation of mass M and spin j, we get a new 
representation which on the one hand is no longer 
irreducible and on the other hand is not yet reduced. 
One of the most interesting features of the helicity 
representation is then to provide a limit representa­
tion which is already reduced into its C2j + 1) 
components. III 

It has been pointed out by Levy-Leblond9 that 
making M = 0 in the momentum-spin representa­
tion (51) for the Galilei group leads also to a re­
ducible representation. We show here that if we 
work in the helicity representation, we get im­
mediately the reduced form of the limit. This was 
expected from the fact that one of the central opera­
tors for the zero-mass case of class lI8 is the helicity 
operator J 'p.20 Let us proceed to the proof. 

If we put M = 0 in (8), we see that the transforma­
tion of the 4-momentum of the corresponding zero­
mass particle is 

19 E. Inonii and E. P. Wigner, Natl. Acad. Sci. USA 39, 
510 (1953); E. P. Wigner, Rev. Mod. Phys. 29, 255 (1957); 
V. 1. Ritus, Ref. 18; D. W. Robinson, Helv. Phys. Acta 35, 
98 (1962); F. Coester, Phys. Rev. 129, 2816 (1963). E. J. 
Saletan, J. Math. Phys. 2, 1 (1964). 

20 M. Hamermesh, Ann. Phys. 9, 518 (1960). 
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rIp ~ (E - p'v, R-Ip) 

under the transformation r-1 = (v, R)-I. Now we 
may let the mass go to zero while keeping unchanged 
the helicity state Ip, o} Consider, e.g., that imparting 
to the particle a further velocity in the direction of 
p leaves IT unchanged. Hence the helicity states are 
well defined for the zero mass particle (which is 
naturally well known directly). Let us then compute 
the behavior of the representation (59) in that 
process. 

Since 

rp ~ (E + Rp·v, Rp), 

We have 

Irp, IT) ~ I(E + Rp'v, Rp), IT). 

and the argument of S(r; p) becomes 

(R, p) = R;IRRR -.P 

which is a rotation leaving ea invariant. Hence we 
get for the Galilei universal covering group G the 
true representation (the central element which is 
now trivial is dropped) 

U(b, a, v, R) Ir-Ip, IT) 

= U(b, a, v, R) I(E - P'V, R-Ip), IT) 

= exp ih-\Eb - p.a) IplT')SI1,,,(R, p) 

with the formula (57) for S(R, p). This is the rep­
resentation of G induced by the representation L(D) 
of its subgroup K = T X Rp" Rp , being isomorphic 
to the two-dimensional Euclidean group in the plane 
(OX I X2 ). Now Ma is diagonal so that 

D!I1,(R, p) = [exp ijcp. . . 1 
exp (-ijcp) 

where cp is the angle of (R, p). Hence the representa­
tion (59) with M = 0 is reduced to the (2j + 1) 
irreducible representations [Olp = p2, s} for each 
value of Ip21. 

U(b, a, v, R) I(E - P'V, R-1p), s) 

= exp i[h-I(Eb - p·a) - scp] I(E, p), s) 

(s = j ... -}) 

which are nothing but the zero mass representations 
named class II by E. Inonii and E. Wigner. This 
result is to be related to a discussion of D. Korff 
in the case of relativistic particles. The main point 
of Korff's discussion is that a zero mass particle 
with spin s and momentum p can be considered as 
the state of momentum p, helicity s of any massive 

particle of spin Isl + k (where k = 0, 1, 2 ... ) 
and the mass of which cannot be experimentally 
found to be different from zero. The surprising fea­
ture of this result can be emphasized by the follow­
ing paradox. The spin of a zero mass particle is 
always parallel to the momentum. The spin of a 
massive particle is said to be parallel to the momen­
tum if its projection on p has its maximal value. 
Hence, a nonzero mass particle of spin s can only 
have the behavior of a zero mass particle of spin s 
if M is very small, in contradiction with Korff's 
result. The answer is obviously to make more precise 
the concept of parallelism between spin and momen­
tum and to distinguish between mathematical maxi­
mum and physical maximum. On the other hand, 
that a state Ipj)(j < s) of a particle does not tend 
to Ips) when M tends to zero (or Ipi ~ <x» is seen 
immediately from the fact that increasing the veloc­
ity in the direction of p does not change the polariza­
tion. 

In terms of wave functions we have 

[U(b, a, v, R)1/t](E, p, s) 

= exp i[h-\Eb - p·a) - scp]1/t(E - P'V, Rp, s). 

As shown by A. Wightman,4 the measure to be 
used in the present case is 

dp.(E, p) = dw(P) dE, 

where dw(P) is the area on the sphere of radius 
Ipl· 

Note added in proof: The mass-zero representa­
tions of class I can also be obtained from the projec­
tive representations by letting M at S-1 (S = spin) 
go to zero in such a way that MS tends to a definite 
limit == (infinite spin representations). This and 
further results concerning the true representations 
of G will be published later. 
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Inequalities are derived for the solutions of linear integral equations of a certain class in terms of 
their inhomogeneous terms and kernels. The construction of these inequalities appears to be very 
simple in practice as it involves only quadratures. The results presented here are, therefore, expected 
to be useful in the investigation of physical problems. 

L INTRODUCTION AND STATEMENT OF 
RESULTS 

I N the present note, some inequalities will be 
derived for the solutions of linear integral equa­

tions in an L2-space whose kernels are subject to 
suitable "smallness" criteria. These were discovered 
in the course of an investigation into the structure 
of partial-wave dispersion relations l where it was re­
quired to find conditions under which the solution 
of a certain integral equation never changes sign. 
The proofs of these results involve only elementary 
considerations. Nevertheless, they do not seem to 
be available in the literature. As linear integral equa­
tions are of frequent occurrence in theoretical phys­
ics, and as these inequalities can be constructed very 
simply by quadratures from the inhomogeneous term 
and the kernel of the integral equation, they are 
expected to be useful in the study of physical prob­
lems.2 We, therefore, believe that they merit separate 
publication. 

We shall first summarize our conventions. The 
integral equation reads 

q;(x) = f(x) + [ dyK(x, y)q;(y), (1.1) 

where b > a, f(x) E L2(a, b) and a solution q;(x) 
is sought in the same space. The limits of integration 
are allowed to be infinite. For simplicity, it will be 
assumed that the interval [a, b] is along the real 
line and that the functions in Eq. (1.1) are real. If 

* Work supported by the U. S. Atomic Energy Commission. 
1 A. P. Balachandran, "Criteria for the Solubility of 

Partial-Wave Dispersion Relations," Syracuse University 
preprint (1965) and Ann. Phys. (to be published). 

I For example, they can be used in the study of the 
Li{>pmann-8chwinger equation in potential scattering which, 
it lS known from the work of Coester and of Scadron, Wein­
berg, and Wright, can be rewritten as an integral equation 
with an Ll..kernel for all energies if the potential is sufficiently 
well-behaved. See F. Coester, Phys. Rev. 133, B1516 (1964); 
and M. Scadronl S. Weinberg and J. Wright, Phys. Rev. 
135, B202 (1964). This would then lead to bounds for the 
T-matrix or for its norm in terms of the potential. Another 
application is to partial-wave dispersion relations [cf. Ref. 1]. 

they are complex, the equation can be rewritten as a 
system of coupled equations by taking its real and 
imaginary parts and the same considerations can 
be applied to this coupled system too.3 Similarly, if 
the integration is along an arbitrary number of 
curves, it can still be converted into a real integral 
by introducing the parametric equations of the 
curves so long as they are themselves the unions 
of any number of differentiable curves. The re­
sulting equation will in general involve complex 
functions, but we can then proceed as described 
above. It should also be clear from these remarks that 
the methods outlined here can be applied to a system 
of coupled integral equations. 

The norm of an arbitrary vector I/I(x) in L2(a, b) 
will be denoted by 111/111. Thus, 

III/1W = [ dxI/l
2
(x). (1.2) 

The symbol I 1/1 (x) 1 will be used for the modulus of 
I/I(x). The scalar product of any two vectors I/Il(X) 
and 1/12(X) will be written as (1/11, 1/12): 

(1/11, 1/12) = [ dxl/ll (x)1/I2(X). (1.3) 

The quantities (K"" 1/1) and k(x) are defined through 
the equations 

(K." 1/1) = [ dyK(x, y)l/I(y) 

and 

k(x) = 1 [[ dyK
2
(x, y) JI 

so that, for example, 

(k,l/I) = [ dx 1[[ dyK
2
(x, y)JII/I(x), 

8 This result was pointed out by Professor E. C. G. 
Sudarshan. 
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and 

IlkW = (k, k) = t dx dyK2(x, y). (1.4) 

The function k(x) is, therefore, nonnegative by 
definition. Let us also set 

I = [(k, 1m2 + (1 - IlkW) IlfW]1, (1.5) 

where the positive root of the radical is to be taken 
whenever 12 > o. 

The quantity IIkl1 2 is just the squared norm of K 
in L2(a, b) X V(a, b). It should be noted that if 
IlkW exists, k(x) also exists for almost all x by 
Fubini's theorem.' 

The results of this paper can now be stated: 

Let IlkW exist. Then, 

(i) If 

IlkW < 1, 

it is true that 

. [(k, If!) + 1] 
f(x) - k(x) (1 _ Ilkl n s ~(x) s f(x) 

for almost all x. Also, 

+ k(x) [(k, 1m + 1] 
(1 - IlkW) 

II~II S [(k, ltD + 1]/(1 - IlkW)· 
(ii) If, instead, 

and 

r > 0, 

then 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

II~II ~ [(k, ltD - 1]/(1 - IlkW)· (1.11) 

A few remarks are in order. 
If f(x) and K(x, y) are continuous functions of 

their arguments and a solution ~(x) is sought which 
is also continuous, it is clear that we need not ex­
clude sets of zero measure in x when writing the 
inequality (1.7). 

In deriving Eq. (1.11), no assumption is made re­
garding the existence or otherwise of the solutions of 
the homogeneous problem. 

(1.12) 

4 See, for example F. Riesz and B. Sz.-Nagy, Functional 
Analysis (Fredrick Ungar Publishing Company, New York, 
1955), p. 83. 

Of course, if this equation has a solution, Eq. (1.1) 
will be consistent only if f(x) satisfies certain stand­
ard criteria. When IlkW < 1, it is well known that 
Eq. (1.12) has no solution and this appears to be the 
reason why we get so much stronger statements in 
this case. 

Now, Eq. (1.1) can be rewritten by iterating it 
n times. Denoting the jth iterate of K(x, y) by 
K W (x, y), we have, with an obvious notation, 

,,-1 

~(x) = f(x) + L (K!i', f) + (K;"', ~) 
i-I 

(1.13) 

This is also a linear integral equation for ~(x). There­
fore,a (iii) If 

I W'" 112 = t dx dy[K("'(x, y)]2 (1.14) 

exists, and ("'(x) E L2(a, b), then the results (i) and 
(ii) are also true if f(x) is replaced by t'" (x) and 
K(x, y) by K("'(x, y). 

The inequalities of the form (1.7) and (1.8) for 
~(x) in terms of the nth iterates become equalities 
in the limit n ~ co if IIkW < 1 and IlfW < co. This 
follows from an easy application of Schwarz's in­
equality6 which shows that 

(1.15a) 

or 

(1. 15b) 

By Fubini's theorem,' 

(1.16) 

thus exists for all n. Further, it vanishes for almost 
all x when n ~ co due to Eq. (1.15b). Schwarz's 
inequality6 also gives 

,,-1 

11("'11 s L IlkII' Ilfll, (1.17) .-0 
so that if Ilfll < co, I If'" II is bounded for all n or 
t"'(x) converges to an element in L2(a, b) when 
n ~ co. Therefore, on taking this limit in the analog 
of Eq. (1.7) for example, we have 

(1.18a) 

i See, for example, Ref. 4, p. 40. 
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or 

(1. 18b) 

for almost all x. Perturbation theory (which con­
verges in the mean with our hypotheses on IIkll and 
Ilfl I) leads to the same result. The convergence of 
the bounds to the exact solution as n ~ co implies, 
in particular, that there exists at least a subsequence 
Ink} such that as n increases through Ink}, the 
bounds get better. 

n. PROOFS 

Ilcpll is always nonnegative, the statement Ilcpll 2: 
IIcpll- in ((:J) is also devoid of content. What is left 
in (fJ) now informs us that 

But then, 

cp(x) = f(x) + (Kz, cp) 

::; f(x) + I(Kz , cp) I 
::; f(x) + k(x) IIcpll 
::; f(x) + k(x) IIcpll+ by Eq. (2.4) 

(2.4) 

(1.1) 

The integral equation 

cp(x) = f(x) + (Kz, cp) 

= f(x) + k(x)[(k, If!) + 1]/(1 - Ilk112) 
(1.1) by Eq. (2.3). 

(2.5) 

implies that Similarly, 

Icp(x) I ::; If(x) I + I(Kz, cp)1 ::; If(x) I + k(x) IIcpll (2.1) cp(x) 2: f(x) - I(Kz, cp)1 

for almost all x, where the last line follows from 2: f(x) - k(x) IIcpll 
Schwarz's inequality.s Therefore, if IIkW is finite, 

IIcpl12 = (cp, cp) 

or 

= (Icpl, Icpl) ::; (If I + k IIcpll, If I + k IIcpl j) 

= IlfW + 2(k, If!) IIcpll + IIkW IIcpW 

The roots of the left-hand side of this equation when 
regarded as a function of IIcpli are at IIcpll±, where 

IIcpll± = [(k, If!) ± 1]/[1 - IIkW]. (2.3) 

The expression for I is 

I = (k, 1f!)2 + (1 - Ilk W) IIfW]i. (1.5) 

The plus and minus signs in Eq. (2.3) go together. 
Whenever I is real, we shall mean by I the positive 
root of the radical. 

We can now prove the various assertions of the 
previous section. 

Proof of (i) 

As IIkW < 1, the form on the left-hand side of 
Eq. (2.2) is greater than zero for all sufficiently 
large IIcpli. As it is also quadratic in IIcpll, the inequal­
ity (2.2) will be satisfied only if (a) its roots IIcpl! ± 
are real, and ({:J) IIcpll- ::; IIcpli ::; IIcpll+. But (a) is no 
restriction as I in Eq. (1.5) is necessarily real when 
IIkW < 1. Also, from the same equation, we find 
that I 2: (k, If/), so that IIcpll- ::; O. Therefore, since 

2: f(x) - k(x) IIcpll+ 
= f(x) - k(x)[(k, If!) + 1]/(1 - IlkW), (2.6) 

where both these inequalities hold up to sets of zero 
measure in x. 

As assertion (i) merely summarizes Eqs. (2.4), 
(2.5) and (2.6), it is completely proved. 

Proof of (ll) 

The coefficient of IIcpW in Eq. (2.2) is now negative 
so that the inequality (2.2) is satisfied for all suf­
ficiently large or small Ilcpll. By assumption, I is real 
and positive so that the roots are also real and dis­
tinct. Thus, Ilcpll must be either greater than the 
larger of the roots (which is IIcpll-) or less than the 
smaller of the roots (which is IIcpll+). That is, either 

(1.11) 

or 

(2.7) 

But (1 - IIkW) is negative while (k, If/) and I are 
positive. Therefore, the right-hand side of Eq. (2.7) 
is negative. As Ilcpll 2: 0, this inequality is impossible 
and (ii) is also proved. 

In conclusion, it may be observed that these 
results are readily modified to apply to integral 
equations of the type 

cp(x) = f(x) + t d1/l(y)K(x, y)cp(y), (2.8) 
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where l/I(Y) is a measure. The integrations which 
occur in the expressions in Eqs. (1.6) to (1.11) 
should then be carried out with respect to Idl/ll. For 
example, 

and 

(2.9) 

A further generalization IS also possible where 
Schwarz's inequality in Eq. (2.1) is replaced by 
Holder's inequality5 after suitable assumptions about 
<p(x), t(x) and K(x, y) are made. This point will not 
be pursued further here, however. 
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If r is an irreducible representation of a group g, and X is a subgroup of g, then r furnishes a 
representation of X which is, in general, reducible, and the branching rules specify which irreducible 
representations of X occur in the decomposition of this representation. Branching rules are derived 
for various choices of 9 and X, including most possibilities that have been discussed as higher sym­
metry groups. 

I. INTRODUCTION 

SEVERAL authors have recently discussed the 
possibility that the strong interactions are ap­

proximately invariant under a group g larger than 
SU(3), and hence that several SU(3) multiplets 
are contained in a single irreducible representation 
of g. A problem that naturally arises in this context 
is that of the branching rules; that is, the determina­
tion of which SU(3) multiplets are contained in a 
given supermultiplet of g. More generally, we may 
formulate the problem in the following way. Sup­
pose r is an irreducible representation of a given 
group g, and that we restrict our attention to those 
elements of g which lie in a given subgroup x. 
Then r furnishes a representation of X which we 
may denote by r J X and call the representation 
of X subduced by r.l In general, r J X will be reduci­
ble and we may write 

(1) 

where the Aa are irreducible representations of X. 
The branching rules problem consists of finding 
the multiplicities Pa • For convenience we shall write 
g J X for the operation of restricting g to X, and 
when there is no possibility of confusion we shall 
write Eq. (1) as 

r- LPaAa. (2) 

This problem can always be solved by writing 
down the branching rule for the lowest-dimensional 
representations of g (which can generally be done 
by inspection) and by constructing all other rep­
resentations out of direct products of the elementary 
representations, but this procedure is extremely 
tedious and it is useful to have a simple analytic 
method that may be applied directly to any given 
representation of g without having to solve the 

* Supported by the Atomic Energy Commission. 
1 A. J. Coleman, lecture notes, Uppsala University July 

1963 (unpublished). ' 

problem for several other representations of lower 
dimensionality first. Certain special cases of branch­
ing rules have been given by various authors, notably 
Wey12 and Boerner3. In this paper we have tried to 
summarize all the cases known already, as well as 
to discuss several others. In general, for arbitrary 
g and X, the branching rules will be extremely com­
plicated and in fact, if the rank of g is large, the 
rules become so complicated to state that they are 
of little use. For this reason, a lot of our discussion 
will be confined to groups of low rank where we 
may exploit the special local isomorphisms that 
obtain for some of the low-order Lie groups. Though 
these results do not generalize, it is, of course, the 
groups of low rank that are of physical interest. 

We have tried to include all cases that have been 
suggested as possible symmetry schemes. These in­
clude SU(4) J SU(3) as suggested by several 
authors,' Sp(6) J SU(3)5.6 and SO(7) t SU(3),O 
SU(6) t [SU(3) ® SU(2)] as suggested by Gursey 
and Radicatr and SU(6) t [SU(3) ® SU(3)] as 
suggested by Gell-Mann.8 It is worth emphasizing 
that the branching rule problem is of some interest 
even when g and X are not both physical symmetry 
groups, since certain parts of the Lagrangian may 
be invariant under a larger group than the full 
Lagrangian. For example, in the case of SU(3) 
symmetry, the kinetic part of the Lagrangian is, 
in fact, invariant under 0(8), and though the inter­
action terms break this symmetry, certain cal-

2 H. Weyl, The Theory of Groups and Quantum Mechanics 
(Dover Publications, Inc., New York, 1931), 2nd ed. 

a H. Boerner, Representations of Groups (North-Holland 
Publishing Company, AlllSterdam, 1963), Chap. VIII. 

4 P. Tarjanne and V. Teplitz, Phys. Rev. Letters 11, 
447 (1963); I. S. Gerstein and M. L. Whippman; Phys. Rev. 
136, B829 (1964); B. J. Bjorken and S. L. Glashow; Phys. 
Letters 11, 255 (1956); D. Amati, H. Bacry, J. Nuyts, and 
J. Prentki CERN preprint. 

6 H. Bacry, J. Nuyts, and L. Van Hove, CERN preprint. 
8 I. S. gerstein. and M. L. Whippman, University of 

Pennsylvama prepnnt. 
7 F. Giirsey and L. Radicati, Phys. Rev. Letters 5, 173 

(1964). 
8 M. Gell-Mann, Physics 1, 63 (1964). 
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culations may be simplified by using this fact. The 
problem of labeling the states of a given irreducible 
representation of 9 may also require us to consider 
several different subgroups :Ie in order to obtain 
sufficient quantum numbers. Finally, we may embed 
a group in a larger group as a purely mathematical 
device to facilitate the calculation of Clebsch­
Gordan coefficients, exploiting the fact that the 
Clebsch-Gordan coefficients of a given group are 
proportional to the Clebsch-Gordan coefficients of 
its subgroups.9 Thus we may derive certain rela­
tionships between SU(3) and SU(2) Clebsch-Gordan 
coefficients by subducing SU(4) to both SU(3) and 
to SU(2) (8) SU(2) or SU(6) to both SU(3) (8) 
SU(3) and SU(2) (8) SU(2) (8) SU(2). 

In most cases we shall discuss, the results are of 
considerably more interest than the methods of 
proof, particularly as the proofs tend to be tedious 
and unilluminating. Hence we have summarized 
the main results in an appendix, and have tried 
to reduce the details of the proofs to the bare 
minimum consistent with clarity. Unfortunately, as 
is often true in group-theory calculations, in many 
cases it is comparatively easy to describe a simple 
procedure for obtaining the branching rules for a 
given representation but extremely complicated to 
state the rules in closed analytic form. In these 
cases we have tried to illustrate the method by 
examples. 

It is worth emphasizing that a given group :Ie 

can, in general, be embedded in 9 in several distinct 
ways, and the branching rules will be different for 
each embedding. The particular embedding we are 
using in each case may be established by applying 
the given branching rules to the representation of 
lowest dimension. 

In the next section, we discuss the relevant prop­
erties of simple groups; our notation is summarized 
in Table 1. In Sec. III we derive various branching 
rules; we summarize several important cases of these 
in Table II. 

II. PROPERTIES OF SIMPLE LIE GROUPS 

We shall only consider the nonexceptional Lie 
groupsl0 SU(n), O(n) and Sp(n). The irreducible 
single valued representations of any of these groups 
may be specifiedll by a partition (X) == (X1X2 ••• Xk ) 

9 G. Racah, lecture notes, Institute for Advanced Study, 
Princeton (1951). 

10 H. Weyl, The Classical Groups (Princeton University 
Press Princeton, New Jersey, 1946). 

11 F. D. Murnaghan, The Unitary and Rotation Groups 
(Spartan Books, Washington, D. C., 1962); The Orthogonal 
and Symplectic Groups (Dublin Institute for Advanced Studies, 
Dublin, 1958). 

TABLE 1. Summary of notation. 

Group 

SU(n) 
O(n) 
Sp(n) 

of k parts with 

Notation for Character 

{X) or {X) .. 
[AJ or [AJ .. 
(A) or (A) .. 

(3) 

where the X's are positive or zero integers. Strictly 
speaking, such a partition specifies a representation 
of U(n) rather than of SU(n), and several different 
partitions specify the same representation of SU(n). 
[To be exact, the partitions (XI + m, X2 + m, ... , 
X" + m) and (XIX2, ••• , X .. ) specify the same rep­
resentation of SU(n) for all integers m.] This point 
is not of much importance in the following work 
and almost all our results apply equally well to 
SU(n) and to U(n). For SU(n), n = k; for Sp(n), 
n = 2k; and for O(n), n = 2k or 2k + 1 according 
as n is even or odd. In the case of O(n), the double­
valued representations may also be specified by k 
numbers satisfying Eq. (3), with the X's all integral 
or all half odd integral. 3 

Following Murnaghan,tl we shall denote the char­
acter of the representation (X) of SU(n) by {X} 
or {X},. when we wish to emphasize the order of the 
group, and shall use [X] or [X] .. for the character of a 
representation of O(n), and (X) or (X)" for Sp(n). 
It is convenient to introduce a set of auxiliary vari­
ables l; defined by 

I; = X; + T;, (4) 

where 

T; = k - j for SUCk) 

=k-j for O(2k) 

=k-j+! for O(2k + 1) 

=k-j+l for Sp(2k). (5) 

The dimension of the representation (X) is given by 

N(X) = HXI X2 ••• Xk)/~(O, 0 ... ,0), (6) 

where for SUCk) 

HA) = II (I, - I;), 
i<i 

for O(2k) 

HX) = II (l~ - m, 
i<i 
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TABLE II. Special cases of the branching rules. The symbols D, A, C, and I stand for defining, adjoint, eoregular and identity 
representation respectively [C is defined by D ® D = I ffi A ffi C in Sp(n) and O(n).] E and F are the representations (21 and 

{ll} ofSU(n). 

Representation of g D A c 

SU(n) 1 SU(n - 1) D + I 
SU(n + m) 1 SU(n) ® SU(m) (D ... 1m) + (I .. , D",) 

A+D+D+1 
(An, 1m) + (In, Am) 

+ (D", Dm) + (D", Dm) 
+ (I .. , 1m) 

SU(nm) 1 SU(n) ® SU(m) 
O(2k + 1) lO(2k) 
O(2k) ! O(2k - 1) 

SpC2k) 1 Sp(2k - 2) 
Sp(2k) ! SUCk) 
O(2k) ! SUCk) 

CD .. , D",) 
D+1 
D +1 
D +21 
D+D 
D+D 

(An, Am) + (An, 1m) + (In, Am) 
A +D C +D +1 

C +D +1 
C + 2D + I 
A+F+F 
A+E+E 

O(2k + 1) 1 SUCk) D +D +1 

for O(2k + 1) 

A+D 
A + 2D + 31 

A+E+E+I 
A+F+F+1 

A+F+F+D+D+1 A+E+E+D+.z)+I 

Colemanl and Robinson12 have shown that the 

~(A) = IT (l~ - m IT 1i' 
;,<i " 

for Sp(2k) 

HX) = IT (l~ - m II 1;. 

(7) m).~. furnish the solution to the branching problem 
SU(m + n) ~ [SU(m) ® SU(n)], where the 
embedding is done by considering the set of all 
(m + n) X (m + n) unimodular unitary matrices 
of the form 

i<i i 

All characters of SU(n), O(2k + 1) and Sp(2k) 
are simple. The character [A]2k of O(2k) is simple 
if Ak = 0; otherwise the corresponding representation 
of O(2k) reduces to two irreducible representations 
of the same dimension. 

m. BRANCHING RULES 

A. SU(t) ~ [SU(n) ® SU(m)] 

The simplest rule of this sort has been given by 
Weyl3 for the case SU(n) ~ SU(n - 1). The rule is 

{Xl .. ~ :E {A'},,-l (8) 

when the sum is over all (A') satisfying 

[
Ul OJ, 
o U2 

where Uland U 2 are respectively m X m and 
n X n unimodular unitary matrices. The branching 
rule is then 

(12) 

where the sum is over all partitions satisfying equa­
tion (21), and where {AI and {~} are now regarded 
as specifying representations of SU(m) and SU(n) 
respectively. This type of embedding is considered 
by Gell-Mann8 for the case SU(6) ~ [SU(3) ® 
SU(3)]. 

We can, however, form a different product of 
(9) representations. Let {A}m and {~} .. be representa­

tions of SU(m) and SU(n), respectively, subject to There are at least two ways in which SU(n) ® 
SU(m) may be embedded in some SUet), correspond­
ing to the two types of product of representations 
of SUet). If {AI and {~} are representations of 
SUet), the inner or Kronecker product of {AI and 
{~} may be reduced in the usual way, using Young 
diagrams for example, to give 

(10) 

where 

(11) 

:E Ai = :E ~i = N. (13) 

We can then reduce the outer produce2 {~l' {A L 
which is a representation of SU(mn) by 

(14) 

where 

U G. de B. Robinson: Representation Theory of the 
Symmetric Group (The University of Toronto Press, Toronto, 
1961). 
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The coefficients CpA. also specify the reduction of 
the inner product of representations of the N-di­
mensional permutatiom group, and may be cal­
culated by a method given by Robinson.12 Colemanl 

gives a recurrence relation for the Cpb and has 
tabulated them up to N = 5. By Frobenius' reci­
procity theorem,12 the branching rules become 

{V}m" ! [SU(m) ® SU(n)] = .L: C,,)..{J'}m{v}n' (15) 

The embedding of SU(m) ® SU(n) used here is 
obtained by forming the mn X mn unimodular 
unitary matrices which are direct products of m X m 
and n X n unimodular unitary matrices, and is the 
embedding of SU(2) ® SU(3) in SU(6) used by 
Giirsey and Radicati. 7 

B. O(n)! O(n - 1) 

The branching rules for this case quoted in the 
appendix are proved by Boerner.s 

C. SP(2k)! SP(2k - 2) 

The results here are rather more complicated 
than for either SU(n) ! SU(n - 1) or O(n) ! 
O(n - 1), since we are going from a group of 2k X 2k 
matrices to a group of (2k - 2) X (2k - 2) matrices 
rather than one of (2k - 1) X (2k - 1) matrices. 
The branching rules are rather involved to write 
down in general, and we shall only treat the cases 
k = 2 and 3. Other cases may be treated in the 
same way. 

For the case k = 3, the character may be written 
as a function of three real angles '1'. in the formlo 

(16) 

where Z(l) is the determinant with rth row given by 

[sin l.'I'1 sin 1,'1'2 sin 1.'I'a]' (17) 

The restriction Sp(6) ! Sp(4) is obtained by letting 
1/13 -+ O. After some manipulation with determinants 
we find that in this limit 

(A)& -+ l;{~ [~ l2(ll - r)la(l2 - s)A(r, s) 

- It: la(ll - r)12(la - s)A(r, s)] 

+ I~ [~ 11(l2 - r)l2(la - s)A(r.s) 

- I~ ll(l2 - r)la(12 - S)A(r,s)]} , (18) 

where 

A(r, s) = [s~ r'l'l s~ S'l'I[ + [s~ 2tpl s~ 'I'll. (19) 
sm r'l'2 sm S'l'2 sm 2'1'2 sm '1'2 

Comparing Eqs. (17) and (19), we see that 

A(r, s) = (r - 2, s - 1)4 (r > s ~ 1) 

= 0 (r = s) 

= -A(s, r) (r < s). 

Collecting terms we find 

(A)6 -+ .L: v(A')(A')., (20) 

where 

v(A') = (AI - M + 1)(A2 - A~ + I)(A3 + 1) 

(AS ::;; A~ ::;; A2 ::;; A{ ::;; AI) 

= (AI - M + 1)(A2 - As + I)N + 1) 

(0 ::;; A; ::;; A3, At ::;; A: ::;; AI) 

= (Ai - A; + 1)(AI - A2 + 1)(Aa + 1) 

(AS ::;; X~ ::;; Af < A2) 

= (A: - Xs + 1)(Af - A2 + I)N + 1) 

(0 ::;; X~ < As ::;; Ai < A2)' 

A similar calculation shows for Sp(4) ! Sp(2) 

(X)4 -+ .L: v(A')(A'h (21) 

with 

V(A') = (A2 + 1)(XI - Af + 1) (A2::;; M ::;; AI) 

= (Af + 1)(AI - A2 + 1) (0::;; M < A2)' 

D. SU(n)! Sp(n), SU(n) ! O(n) 

These cases have been discussed by Murnaghan.ll 

The results may be expressed most simply by intro­
ducing the operators ~'" where ~" is defined to be 
the operator which reduces the pth element of a 
partition by unity. That is 

~,,{AI' .,. , Ap , ••• , An} 

= {AI' .,. , A" - 1, ... , A .. }. (22) 

Then Murnaghan has shownll 

k 

[A] .. = IT (1 - ~o~p){A}", 
pfo (23) 

k 

(A) .. = IT (1 - ~o~,,){A} .. , 
p<. 

1 

where n = 2k or 2k + 1 according as it is even or 
odd. The inversion of these equations is complicated, 
and is discussed fully in Ref. (11). 
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E. O(2k) ! SUCk), O(2k + 1) ! SUCk) 

The case k = 1 is trivial. For k = 2, 0(4) ! SU(2) 
and 0(5) ! SU(2) may be found by using the branch­
ing rules for O(n) ! O(n - 1) since SU(2) and 0(3) 
are locally isomorphic. When k = 3, 0(6) ! SU(3) 
may be found by using the fact that 0(6) and SU(4) 
are locally isomorphic. The problem is not com­
pletely trivial, however, since we must find the 
connection between the specification of a representa­
tion in terms of a four part partition {~1~2~a~414 and 
that in terms of a three part partition [AIA2Aa]&. This 
may be done by expressing both in terms of the 
components of the highest weight of the representa­
tion along the simple weights. Let ai, a2, aa be the 
simple weights of SU(4) and let M be the highest 
weight of the representation. Define 

chain 0(7) ---+ 0(6) ---+ SU(3). Finally, we can find 
the branching rules for 0(8)!SU(4) and 0(9)!SU(4) 
by the chains 0(8) ---+ 0(7) ---+ 0(6) and 0(9) ---+ 

0(8) ---+ 0(7) ---+ 0(6) and by Eq. (25). 

F. SP(2k) ! S U(k) 

As before, the case k = 1 is trivial, and k = 2 
may be solved using the isomorphism of Sp(4) 
and 0(5). The case k = 3 may be treated by intro­
ducing an intermediate stage of 0(6). Of course, 
0(6) is not a subgroup of Sp(6), but it is possible 
to express the characters of one in terms of the 
characters of the other, and since the branching 
rules are merely algebraic relations between char­
acters, this procedure is justified. 

From Eq. (23) we may write 

pr = 2(M,ar)/(ar , ar). (24) (A)2~ = [i1 (1 - ~!) JI [A]2~ (28) 

Then Dynkin la shows 

Hence 

Pr = ~r - ~r+1 

PI = A2 + Aa, 

P2 = Al - A2, 

Pa = A2 - A3' 

(r = 1,2,3), 

~I = Al + A2, 

~2 = Al - Aa, 

~a = A2 - Aa, 

(25) 

and without loss of generality we can take ~. = O. 
It is important to remember when using these 
formulas, that [A]& is not a simple character if 
A3 ¢ O. It is easy to prove that in this case we 
should write 

[AIA2A3]6 = {AI + A2' Al - Aa, A2 - Aa, 014 

+ {AI + A2' Al + A3' A2 + A3' 01.. (26) 

The branching rules can now be obtained from 
Eq. (9). For example, consider the representation 
[1, 1, 1] of SO(6), 

[1, 1, 1]& = {2, 0, 0, 014 + {2, 2, 2, 01. 

---+ {2, 0, Ola + {I, 0, Ola + to, 0, Ola 

+ {2, 2, Ola + {2, 2, lla + {2, 2, 21a. 
(27) 

The case 0(7) ! SU(3) can now be solved via the 

11 E. B. Dynkin: Amer. Math. Soc. Trans!. II 6 245 
(1957). ' 

and hence 

(AIA2Aa)& = L [AfMA~]&, 

where the sum is over all (A') such that 

Ar - A~ == 0 (mod 2) (r = 1,2,3). 

(29) 

(30) 

Note that some of the terms in this sum will not 
satisfy 

Af ~ A~ ~ A~. 

These terms must be brought into standard form 
usingl

! 

[MA~A~] = -[A~ - 1, Af + 1, A~ 

= -[A~, A~ - 1, A~ + 1]. (31) 

From this we see that [A'] vanishes if A~ = Af + 1 
or A~ = A~ + 1. It also vanishes if Al 2:: X; 2:: A~, 
and A~ < O. This procedure is best illustrated by an 
example. Consider the representation (110) of Sp(6). 
Then 

(110)& 

= [110]& + [-110]& + [1 - 10]& + 
= [110]& - [000]& 

= {2110}4 - {OOOO}4 

---+ {211la + {111}s + {21O}s + {110h - {ooo}a 

= {100}a + {21Ola + {110la· 

That is, the 14-dimensional representation of Sp(6) 
decomposes into representations of SU(3) accord­
ing to 

14 ---+ 3 + 8 + 3. 
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The case Sp(8) l SU(4) may be treated similarly, by 
writing (X)s in terms of [Xls. 

G. Spem) l Oen); Oem) l Spen) 

These cases can be handled analogously to the 
last one, using Eq. (28). That is, we write (A) .. in 
terms of [Al .. , or vice versa and then use the results 
of Sec. B or C. This method will work for any m 
and n (provided, of course, that these are such that 
the one group is a subgroup of the other) and does 
not depend on any isomorphisms between different 
groups. 

APPENDIX: SUMMARY OF BRANCHING RULES 

(1) SU(n) l SU(n - 1)2 

{A} .. ~ L {A'} .. -l 

with 

(2) SU(n + m) l [SU(n) (8) SU(m)ll 

{V}n+ ... ~ L m).II.{A} .. {~} .. 

where 

L Ai + L ~i = LVi = N 

and 

{A} .. + ... {~} .. + .. = L m).jI,{v}"+",, 

The m).II' have been tabulated by Murnaghan l
' for 

N ~ 10. 

(3) SU(nm) l [SU(n) (8) SU(m)] 

{v} ..... ~ L C).II.{A} .. {p} .. , 

where 

L Ai = L Pi = L Vi = N 

and 

{A}' {p} = L C)'II'{v}, 

The C).,.. have been tabulated by Colemanl for N ~ 5. 

(4) O(2k) ! O(2k - 1)3 

[A]2k ~ L [A']2.H 

where 

Al ~ M ~ A2 ~ A~ .•• ~ A~-l ~ Ak, 

(5) 0(2k + 1) l 0(2k)3 

[A]2k+l ~ L [X']2k, 

where 

Al ~ A~ ~ A2 ~ .•• ~ Ak ~ X~ ~ 0 

and the A~ are integral or half-integral according 
to what the Ai are. 

(6) Sp(6) l Sp(4) 

(A)a ~ L V(A')(A')4, 

with 

V(A') = (AI - A~ + 1)(X2 - A~ + 1)(Xa + 1), 

(Xa ~ A~ ~ A2 ~ A~ ~ AI) 

= (AI - A~ + 1)(A2 - Aa + 1)(A~ + 1) 

(0 ~ A~ ~ Aa ~ A2 ~ X~ ~ AI) 

= (X{ - A~ + 1)(AI - A2 + 1)(Aa + 1) 

(Aa ~ A~ ~ X~ < A2) 

= (A~ - Aa + 1)(Al - A2 + 1)(X~ + 1) 

(0 ~ M < As ~ A~ < At). 

(7) Sp(4) l Sp(2) 

(A), ~ L V(A')(A')2, 

with 

V(A') = (A2 + 1)(Xl - A~ + 1) 

= (A~ + 1)(AI - A2 + 1) 

(8) 0(6) l SU(3) 

(AI ~ M ~ AI) 

(0 ~ M < A2)' 

[X]a ~ L {A'}a + L {X" la, 
where (a) if Aa = 0, 

Al + A2 ~ A~' ~ Al ~ A~ ~ A2 ~ X; ~ 0 

and second term does not appear, 

(b) if Xa ¢ 0, 

Al + At ~ A~ ~ Al - Aa ~ A~ ~ A2 - As ~ X~ ~ 0, 

Xl + A2 ~ A~' ~ Al + Aa ~ A~' ~ A2 + X3 ~ X~' ~ O. 

(9) Sp(6) l SU(3) 

Use 

and the A~ are integral or half-integral according where 
to what the Ai are. 

Ar == A~ (mod 2) (r = 1,2,3) 
14 F. D. Murnaghan: Amer. J. Math. 59, 437 (1937); 

60,44(1938). and above result. 
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The polynomials in the components of a set of n-dimensional vectors that form a basis for an 
irreducible representation of S'Un are shown to be part of the basis of the group Unr, in which the 
subgroup 'Un X Ur is explicitly reduced and r 2: n - 1. Using this result, the concept of auxiliary 
Wigner coefficient is introduced, for which the problem of multiplicity does not arise and the phase 
convention is related to that of Gel'fand and Zetlin; recursion relations for this auxiliary coefficient 
are obtained in a straightforward way, and the connection between it and the ordinary Wigner 
coefficient is shown to be simple. The recursion relations are being programmed for an electronic 
computer to allow the systematic evaluation of the Wigner coefficients of S'Ua and S'U •. 

1. INTRODUCTION 

I N a recent publication\ to be referred to here as 
I, one of the authors (M.M.) gave a complete 

discussion of the Wigner coefficients of the unitary 
groups. These coefficients were derived as scalar 
products of polynomials in creation operators, poly­
nomials which formed bases for the irreducible rep­
resentations (BIR's) of the unitary groups. The 
technique for determining these polynoInials, in­
cluding the resolution of the multiplicity problem, 
was given in I. 

The general algebraic or numerical evaluation of 
these scalar products is laborious. The recursion 
relations derived from them in the present paper 
will perInit the systematic calculation of numerical 
values for the coefficients. 

Specific coefficients of the unitary groups2 and of 
S'U3 in particular3

-
6 have been extensively discussed 

in the literature, and tables of those used in strong­
interaction applications are available7

• However, 
elementary-particle physics and nuclear-structure 
problemss

-
1o require a much wider set of Wigner coef-

* Work supported by the Comisi6n N acional de Energ(a 
Nuclear, Mexico. 

1 M. Moshinsky, J. Math. Phys. 4, 1128 (1963). 
2 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 

1449 (1963). 
3 M. Moshinsky, Rev. Mod. Phys. 34, 813 (1962). 
4 D. Lurie and A. J. Macfarlane, J. Math. Phys. 5, 

565 (1964). 
6 A. R. Edmonds, Proc. Roy. Soc. (London) A268, 567 

(1962). The problem of multiplicity is not discussed in this 
article. 

S K. T. Hecht has used recursion relations of the Wigner 
coefficients of S'U3 to derive particular coefficients. We are 
indebted for a copy of his paper prior to publication. 

7 Y. Dothan and H. Harari, Report IA-777, Rehovoth, 
Israel, 1962; H. Goldberg, Report IA-834, Rehovoth, Israel, 
1963; P. McNamee and F. Chilton, Rev. Mod. Phys. 36, 
1005 (1964). 

8 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958). 
9 M. Moshinsky, "Group Theory and the Many-Body 

Problem," to appear in Physics of Many-Particle Systems, 
edited by E. Meeron (Gordon and Breach, Inc., New York, 
to be published). 

10 J. Flores, E. Chac6n, P. A. Mello, and M. de Llano, 
Nuclear Phys. (to be published). 

ficients. For this reason, two of the authors (T .A.B. 
and I.R.) are programming the recursion relations ob­
tained in the present paper and plan to make the pro­
gram or partial tables available to those interested. 

Besides this pragmatic purpose, it will be seen 
that the concept of auxiliary Wigner coefficient 
introduced in this paper allows one to formulate a 
characterization of the multiplicity problem which 
differs from some that have been proposed recentlyl.ll 
and seems to be applicable not only to the unitary 
groups but also to other semisimple compact Lie 
groups such as Rn and SP2n. 

2. THE BIR OF S'Un AS PART OF THE BIR OF 
Unr :) 'Un X Ur 

In I, the BIR of S'Un was given in tenns of poly­
noInials in the components of the n-dimensional 
vectors a_: with p. = 1 ... n the component index 
and 8 = 1 ... r the vector index. The general IR 
of S'Un requires only n - 1 vectors; to build up 
Kronecker products of the BIR's, however, r>n-l 
is convenient. The a_: are Bose creation operators 
whose properties were described in I. From them 
the operators 

C•I + .1 /0' "" C" C' "" CPo JU = aSAaa ,\...I~ = L..i "., t = £...J pt 
P 

(2.1) 

are constructed,9 which are seen to be, respectively, 
the generators of the unitary groups U nr, 'Un, Ur • 

As was seen in I, aP
' may be defined as ajaap:. 

With respect to Unn ap: corresponds to a single 
vector of dimension nr and so the set of all linearly 
independent homogeneous polynoInials of degree N 
in the ap: forms the BIR of the completely symmetric 
representation of Unr, characterized by [N]. This set 
contains the BIR of 'Un X Ur C Unr to which belong 
the homogeneous polynomials P of degree N that 

11 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 
5, 682 (1965). 

1540 
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are of highest weight in 'Un and U. and therefore 
satisfy 

e:p = hpP, e;p = 0, p. < P; 

C:P = k.P, C!P = 0, 8 < t. (2.2) 

It was shown in I that there are solutions of (2.2) 
for a partition [hi ... hn ] of N if and only if k. = h., 
1 ~ 8 ~ n; k. = 0, n < 8; the solutions are unique 
and are given by 

P = A (hi ... h,,)(~Dh. -h, (~!~l.-h. . .. (~!~:: ::)h., 

(2.3) 
where 

[

.. ;-1 Jl 
A (hI ... h,,) = n n (hi - h; + j - i) 

[ " J-t X II (hi + n - i)! .-1 (2.4) 

and 

(2.5) 

with II standing for all permutations of 81, 82, •• , 8;. 

The remainder of the BIR of Un. classified accord­
ing to the canonical chains 

U,.. :::> 'U,. X U., 
'U" :.::> 'U,.-1 :> ... 'U1 (2.6) 

is obtained by applying the lowering operators 

.c~, P > p. = 1 ... n - 1; L:, t > 8 = 1 ... r - 1, 

introduced by Nagel and Moshinsky12. Using the 
notation of Gel'fand and Zetlinl3

, the resulting poly­
nomials will be 

P(hii' kim) 

hi,. . . . hnn 0 0 ... OJ 

klr-l .... ~"~-10 ... ° 
kn 

== P hl ,.-1 ••• h,._I,._I; 

(2.7) 

where the hii' kim satisfy the usual inequalities14 

hi +li ~ hi +li- 1 ~ hii' 

kl+lm ~ kl+ 1m- 1 ~ kim, 

1 ~ i ~ j ~ n, 

1 ~ l ~ m ~ r. 

In the notation of (2.3), hp .. = hp • 

(2.8) 

12 J. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 
(1965) 14, 29 (1965); Rev. Mexicana Ffs. 

11 r. M. Gel'fand and M. L. Zetlin, Doklady Akad. Nauk 
SSSR 71, 825 (1950). 

U H. Weyl, The Theory of GrOUp8 and Quantum Mechanic8 
(Dover Publications, Inc., New York, 1931), p. 391. 

Put r = 2n - 2 and consider the ploynomials 
(2.7) which are a BIR for S'U .. , i.e., with h .... = 0; 
those which are of highest weight in U2 .. - 2 must 
satisfy 

C!p = 0, 

t > 8 = 1 ... 2n - 3. (2.9) 

It was seen in I that (2.9) has solutions only for 
k •. 2n-2 = h ... for 1 ~ 8 ~ n - 1, k. 2n- 2 = ° for 
n ~ 8 ~ 2n - 2. These solutions therefore depend 
only on the first n - 1 vectors and are characterized 
by (2.9) in the same way as the first BIR of S'U,. 
discussed in I. Since these polynomials are of highest 
weight in U2n - 2 , kim = k 12n- 2 for any m, and the BIR 
of S'Un may be written 

(2.10) 

Another set of polynomials that form a BIR of 
S'Un in terms of the components of an independent 
set of vectors 8 = n .. , 2n - 2 may be obtained 
by taking the polynomials (2.7), again with h .... = 0, 
which are of lowest weight in U2,.-2 and thus satisfy 

C:P = 0, 

t > 8 = 1 ... 2n - 3. (2.11) 

The equations (2.11) result from (2.9) by means of 
the permutation of the indices 

[ 
1 2 2n - 3 2n - 2] (2.12) 

2n-22n-3 2 1 

and thus they have solutions only when 

k •. 2,.-2 = 0, 1~8~n-l; (2.13) 
n ~ 8 ~ 2n - 2. 

These solutions therefore depend only on the com­
ponents of the last n - 1 vectors and correspond 
to the second BIR of S'U.. discussed in 1. They 
may be written, in analogy to (2.10), 

(2.14) 

Because of (2.11), Pm!n is of minImUm weight 
in U2,.-2, so that the k's give the representations of 
U2n- 2 and its subgroups in reverse order; thus 
[k2n-2.2n-1 .• , k,..2,.0 •.. 0] is that of U2n- 2 • 

As was seen in I, the Wigner coefficients of 
S'U,. may be expressed as scalar products of 
P max(M;)P min(hm with one of the polynomials of the 
BIR of 'U,. X U2,.-2 if 'U,. is characterised by the 
canonical chain (2.6), U2 .. - 2 , however, by U2,.-2 :::> 
U .. - 1 + U,.-t. Such a polynomial will be denoted by 
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hln ••• h
nn 

... hn - 1n- 1 

where the IR of U2n- 2 is given by [h1n ••• h"n 0 ... 0] 
and those of its subgroups U,,_I and their canonical 
chain of subgroups are characterized by h~;, h~~, 
1 ::; i ::; i ::; n - 1. The rows of the BIR of U2"-2 
are not completely defined by these subgroups, so 
that (see I) the eigenvalues X of another !n(n-3)+1 
operators X are required to complete the definition. 

Both (2.7) and (2.15) are BIR of 'Un X U2n- 2; and 
so (2.15) may be expanded in terms of (2.7). The 
coefficients are evidently independent of hi;, 1 ::; 
i ::; i ::; n - 1, and since the first subgroup U,,_I 
coincides in both chains, they will be different from 
zero only if ki; = h~i7 1 ::; i ::; i ::; n - 1, and more­
over will be independent of the h:; with j < n - 1. 
The polynomials (2.15) are completely characterized 
by the eigenvalues of the Casimir operatorslO- 11 GI 

of Un- I and of the operators! X, all of which are 
functions only of the C! and so commute with the 
er. in consequence the matrix elements of the GI ", 
and X with respect to the states formed by applying 
the polynomials (2.7) to the ground state 10) (defined 
bya"'IO) = 0 for all J..!., 8) will not depend on the hi; 
for i < n. They need thus only be found for the 
case hi; = h.n for all j, i.e., for the GeI'fand states2.12.13 
of U2n- 2; they may be derived from the matrix ele­
ments of C!, calculated by GeI'fand and Zetlin. The 
matrices so obtained may be diagonalised simul­
taneously, since the GI and X operators commute; 
the components of the eigenvectors so found are 
the coefficients of the expansion of the CP of (2.15) 
in terms of the P of (2.7). 

Once these expansion coefficients are obtained, 
the full Wigner coefficient of S'U,., written as 

(01 P:ax(M;)P:in(h:D 

[h .. ' hin 0 ]10) (2.16) Xcp '" X 
h: f = Mn1i~~ = h~~'+j-1.n 

15 V. Bargmann and M. Moshinsky, Nucl. Phys. 18,697 
(1960). " Le 

18 G. Racah, "Group Theory and Sp~ctroscopYl cture 
notes, Institute of Advanced Study, Pnnceton, New Jersey 
(1951). 

17 The operators GI are defined by 
2n-2 

G, == :E C::C:: ... C;~. ...... ,-. 

hln ... hnn 0··· 0 

hfn-I ... h~-ln-1 

hfn-2 ... 

h{~_1 ... h~~ln_1 

hf~-2 ... 

1"" nil 

X , 

may be found from the scalar product 

(01 P:ax(M")P:in(h~~i+j-1.n)P(h'j, kim) 10) 

in which 

rh l ", 
k I2 .. - 2 = ~ 

lO 

I::;Z::;n-l 

n ::; Z ::; 2n - 2 

1 ::;i::;j::;n-l. 

(2.15) 

(2.17) 

(2.18) 

Here h~" = h~~ 0, the symbol t indicates the 
Hermitian conjugate, and the representation [h.".] 
is derived from [h~nl and [h~l by the usual Littlewood 
rules.1s 

The scalar product (2.17) will be called the aux­
iZiary Wigner coefficient of Scu .. (A W n); it differs from 
(2.17) in that the canonical chain of subgroups (2.6) 
characterizes the polynomial P(hij, kim), whereas 
the chain U2,,-2 :J U .. - 1 + Un- 1 was used for Cp, so 
that the X are needed to resolve the multiplicity prob­
lem. The canonical structure of (2.18) makes it pos­
sible to find recursion relations for it, as will be 
done in the following sections. The case of S'Ua is 
treated first, for the sake of simplicity and because 
of its intrinsic importance. 

3. RECURSION RELATIONS FOR THE AWl 

In this section the notation to be used is 

(3.1) 
k i3 = u, 

with a similar one for the primed and double­
primed h's. 

The three polynomials in (2.17), written for the 
case n = 3, each form a BIR for the subgroup 
Scu2 of S'Ua, and therefore the Wigner-Eckart the­
orem shows that the scalar product will depend 
on h:1 and h:: through the ordinary Wigner coefficient 

(t' t" T' T" ItT): 

, 1(' ') t" _ l(q" _ q") t ="2 ql - q2 , -"2 I 2, 

T' = h:1 - !(qf + q~), T" = hff - !(q:' + q~'), 
t = !(ql - q2), T = hll - !(ql + q2)' (3.2) 

18 E. E. Littlewood, The Theory oj Group Characters (Ox­
ford University Press, Oxford, England, 1940), p. 40 . 
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It is thus sufficient to determine the value of (2.17) 
for appropriately chosen values of hil and hi{; other 
values are then derived by using (3.2). It is easily 
seen that the choice 

(3.3) 

satisfies in all cases the inequalities (2.8), It will 
also be seen that the Littlewood rules force the values 

(3.4) 

but that the values of the Ui are not so determined. 
The AWa to be evaluated are thus 

r;~o 1 [M'h; '0 1 
hIh2ha hlhahaO 

(0/ P~a:< q~q~ P~in qf'q~' P 
qlqS U1UaUa 10) 

qf q~' 
qf + q~' Mh~ 

M 

<hfh
l h"~' I h h h ) (3.5) 

_ 1:1 
1 1 2 3; U1UaUa = I 

qiq; g:'g~' gIgS • 

A[h1 h2 ha) 
qi g2 

In the abbreviated notation only nonrepeated 
indices are retained; thus in the ket, the first row 
is common to both groups, except for a zero, and is 
written only once. 

In (3.5), P rna:< and P min are now not only of highest 
and lowest weight in U., but also in the subgroup 
CU2 of SCUa• Pm"" was obtained in Eq. (A18) of Ref. 3. 
P min may then be obtained by using the permuta­
tion (2.12) for both U4 and CUs, Le., (1 3 ~ ~) for 
the 8 indices and (~ i ~ for the p.'s, so that 

[
h:lh"O] P min = A 
qf'q~' 

X (A!)a., '-h." (A:)~" '-a," (A~:)"'" (Amh•• '-H" • (3.6) 

To obtain the correct normalisation, however, it is 
necessary to lower the weight from P max by means 
of the lowering operators1ll mentioned above; it 
turns out that A in (3.6) is positive if the indices on 
the A'S are arranged in the natural order and that 
for all polynomials it takes the formH1 

_ [ (hI - hs + 2) 1 (ha - h3 + 1)! (hI - ha + 1)! (gt - g2 + 1)! Ji 
- (hI + 2)1 (ha + 1)1 hal (qa - hll)! (ql - ha + 1)1 (ha - qa)l (hI - qa + 1)! (qI - h2)! (hi - qI)! • 

(3.7) 

From (3.6) it is clear that one can write 

A-I[MI ~' 0JPmi:o[M1 

W OJ = A~:A-l[MI-1 ~/-1 °jPmin[hi/- l h~/-l OJ 
gi' g~' qi' g~' q~' -1 q~' qF -1 q~' 

= A~:A-l[M'-l h~'-l 0)Pmiu[hr1

-
1 h~'-l OJ = A:A-1[h{I-l h~' 0lPmin[h~/-l h~' OJ 

q~'-l q~'-l qi'-l q~f_l q~' q~' gi' g~' 

= A:A-1['W-l h~' 0jPm;n[h{I-l h,' OJ. (3.8) 
q~/-l q~' qf'-1 q~' 

The four forms of (3.8) yield the four possible recursion relations for the A Wa. Substituting, for instance, 
the first form in (3.5) and making use of the completeness of the P's, 

<
h{ M h{' ~' Ihl h2 ha• ) _ '" <h{ ~ hi' - 1 M' - 1 I iiI ii2 ii3. - - -) , , Ul U2 Ua - ~ , Ul Us Ua 

qt q' q" q" q q Iiiii l' , q' q' qff _ 1 q" q- q-
121212 iI.121 Z 12 

A[hifM10] liil ii2 iia Ul Uz Us hi hz ha Ul U2 Ual 
X 

q{' g~' 0) < Ii,q, hi M (A~!) t ql qz hi h~ ) (3.9) 
A [hi' - 1 M' - 1 a I - hi q{ + q~' hi I 

gi' - 1 q~' 
rl 

18 M. Moshinsky, T. A. Brody, and I. Renero, Rev. Mexicana Frs. (to be published). 
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where 

Ih, u, 

< g; h~ (A~i) t 
11\ hi 

== (01 pt 

I hi 

=< q, 

hi hi 0 

q. U; A;iP 
q~+q~' M 

hi 

U i h, U.! 

h~ . A34 
23 iji hi). 

hi h, 0 

iji Ui 
10) 

Tl h' . 
hi 

(3.10) 

Iqi+q~' hi f\ hil 

The last relation holds because the matrices are rea1.12 

The calculation for the matrix elements of Ai, 
A:, A~: and A~: is straightforward if laborious; it 
will be described elsewhere.19 The results will be 
found in the Appendix; on substituting them into 
(3.9) and similar equations, the required recursion 
relations for the AWa are obtained. 

If the recursion relations using (A5) or (A7) are 
used h~' times, one arrives at an A Wa with a single 
row, namely [hi' - h~' 0]; for this a closed expression 
is available3 which has been programmed for com­
puter evaluation by one of us (T.A.B.). It can also be 
obtained by now applying (AI) or (A2) hi' - h~' 
times. By the time this paper appears it is hoped 
that a computer program exists for carrying out 
the recursions. 

In order to find from the A W 3 the Wigner coeffi­
cients of S'Ua, it is merely necessary to carry out 
the procedure described above; for the present case, 
this implies diagonalizing the matrix elementsl 

(3.11) 

where 

4 2 

G2 = L: C!C:, X = L: C:+2C~C~+2 
•• t =3 3 ,f ,u'=l 

and 1 ::; I ::; m ::; 4. These are derived trivially 
from the matrix elements of the C! obtained by 
Gel'fand and Zetlin. 13 

It should be noted that the Wigner coefficients 
obtained in this manner are not identical to the 
isoscalar factors defined by Edmonds;5 these would 
have been obtained if instead of (3.3) the choice 
hil = q:, hi: = qi' had been made and a factor 

(t' t' til - til Itt' - t") 

- [ (ql-q2+ 1)(qi-qD! (qi'-qnl Ji 
- (q~+q~/-ql)l (q~+q~/-q2+1)1 . 

introduced. 
The form (3.6) of P min is obtained by using the 

lowering operators of Nagel and Moshinsky12 both 
in U4 and 'U8; since the normalization for these was 
chosen in such a way that the Gel'fand states 
obtained by means of them give matrix elements 
of the generators of U4 and 'Ua which coincide with 
those given by Gel'fand and Zetlin,18 the phase con­
vention used here for the AW8 is the same as that 
for Wigner coefficients derived from these generator 
matrix elements.2 The ordinary Wigner coefficient 
will, however, still contain an undefined phase which 
arises in the diagonalization of the matrices (3.11). 

From the orthonormality property of the ordinary 
Wigner coefficient it may be deduced, using the 
fact that P max, P min and P in (3.5) form complete 
bases for polynomials in the first two, last two, and 
all four vectors, respectively, that the AWa obey 
the rule 

3 2 

= II ~hili, ~"'il; II ~.jql' (3.12) 
i-1 ."-1 

which differs from the usual orthonormality relation 
in that a summation over h~' appears; because of 
(2.18), there is none over h~. In the orthonormality 
relation for the Wigner coefficients obtained by the 
procedure just described, no summation over M or 
h~' appears, of course; they are orthonormal in the 
hi, q, and x. 

4. RECURSION RELATIONS FOR THE AW" 

These may be derived by a procedure which simply 
generalizes that of the preceding section and will, 
therefore, only be outlined. 

Assuming that the Wigner coefficients of S'Un- l 

are available, P max and P min may be chosen to be 
of highest and lowest weight, respectively, both in 
U2n- 2 and 'Un - 1 , so that 

for 1::; i ::; j ::; n - 2. (4.1) 
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P min must now be a solution of (2.11) and of 

1 ::;; p, < I' ::;; n - 1 (4.2) 

(the notation hin = hi, hin- I = qi, etc., will be used 
when convenient). Using the pennutations (2.12) and 

2 

n-2 

... n-l n] 

... 1 n 

for the 8 and p" the solution is seen to be 

Pmin(h:', q?) = A[hi' ... h~~1 0](A2:::~)""'-h'" 
qi' ... q~~1 

X (A 2:-2)h. "-0." (A 2:::: 2:::DO' "-h." 

X (A2:::~ 2:-2/'''-0,,, ... (A; ";1 ::: 2:-2)hn-'''-an-.'', 

(4.3) 
whereI9 

A[M'] 
q:' 

[iI IT (hi-h;+j-i)! (qi-q;+j-i)! J' 
;-1 i-I (hi-q;+j-i)! (qi-hi+I+j-i)! . 

(4.4) 

Now (4.3) may be written in alternative fonns anal­
ogous to (3.8), and these lead to recursion relations 
in which the coefficients are, except for ratios of 
the normalization constants (4.4), the matrix ele­
ments 

(h k I A 2 .. -2-•... 2 .. -3 2 .. -2 Ih- k-) 
ii, 1m ~ n-l-a ••• n-2 n-l ii, 1m, 

(h k I A 2 .. -2-•... 2 .. -3 2 .. -2 Ih- k-) 
ii, 1m L.l n-a ... n-l n ii, 1m, 

q = 0, 1, ... ,n - 2. (4.5) 

Their derivation is described elsewhere.19 

By diagonalizing simultaneously the matrices of 
the Casimir and X operators, one obtains the 
coefficients necessary to convert the AWn gotten from 

/hi + ~iB + ~ib hi + ~ia + ~ib 0 

< qi + ~ia' ; Ui + ~id 
r t Vi 

I WI 

(4.5) into particular Wigner coefficients of S'lln, i.e., 
those satisfying (4.1). There are now however, n - 2 
Casimir operators and !n(n - 3) + 1 operators of 
the type X. Care must be taken in using these par­
ticular Wigner coefficients of S'lln, since to obtain 
the general Wigner coefficients the product with 
the general coefficients of S'lln-l must be summed 
over the eigenvalues X of the X of S'll,.-l' 

It is planned to carry out the procedure described 
here for S'll4, because of its importance in super­
multiplet theory. 

APPENDIX 

The matrix elements of A;, A;! [see Eq. (3.10)] 
are different from zero only if certain of the following 
conditions hold: 

Which of these must hold may easily be seen from 
the particular matrix element; thus Ai can only 
affect the hi and only increases one of them by 1, 
so that the first condition, with b = 0, is the only 
one applicable; for A~, the first two conditions hold, 
with b = 0 and b' = 0; and so on. All quantities 
not governed by these relations have, of course, 
the same value in bra and keto 

In order to simplify the notation, the convention 
is adopted in this Appendix of indicating in the 
bra merely the indices which correspond to places 
where a quantity has been increased by one; the 
first row, which, except for a zero, is common to both 
chains of groups, is written only once; the triplets 
(a, b, c) and (d, e, f) are taken to be arbitrary per­
mutations of (1, 2, 3), and (a', b') is a permutation 
of (1, 2) i and 

A34 
23 

Sex) = {+1 
-1 

Thus for instance, 

hi hi 01 
qi. Ui (= (:,; , 
rl Vi 

WI 

for x ~ 0 

for x < O. 

: 1 A~: I) 

With these conventions, the matrix elements of interest for S'll3 are given below. That for A~:, 
though not needed for the computation of Wigner coefficients, is given for completeness' sake. 

<~ 1 A! I) = [(ha - qt + 2 - a)(ha - q2 + 3 - a)B]t, (AI) 
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_ S( , )[(ho - gb' + bt - a + l)(h" - g". + at - b)(hc - ge' + at - c)(g •. - Tl + 2 - a') BJ' 
- a - a (b' ')( b' I + ) , g". - gb' + - a qa' - qQ' + - a 1 

(A2) 

<if; I Ai I) = (-It'+lS(a' - a) 

X [_ (h" - go' + b' - a + l)(hb - q". + a' - b)(hc - qQ' + a' - C)(qb' - rl + 1 - b') BJt (A3) 
(q". - qb' + b' - a')(q". - qb' + b' - a' + 1) . • 

In these fonnulas, 

B = (he - Ut + 2 - a)(h" - Uz + 3 - a)(h. - Us + 4 - a) ,(A4) 
(h" - he + b - a)(h" - hb + b - a + l)(h" - he + c - a)(h" - he + c - a + 1) 

<I~; d I A~! I) = (-ly+dS(d - c)[-(h. - ql + 1 - c)(h. - 92 + 2 - c)K]t, (AS) 

<i,b; d I A:: I) = (-I)dS(a' - c)S(d - c) 

X [_ (h" - q1>' + b' - a + l)(hb - q1>' + b' - b + l)(h. - qQ' + at - C)(qb' - rl + 1 - b') KJt 
(q", - qb' + b' - a')(qa' - qb' + b' - a' + 1) , 

(A6) 

<:/~ d I A~: I) = (-l)b'+<!S(a' - c)S(d - c) 

X [(he - 9,,' + b' - a + l)(hb - qb' + b' - b + l)(h. - qQ' + a' - c)(g". - rl + 2 - at) KJI (A7) 
(q", - gb' + b' - a'Hqo' - qb' + b' - a' + 1) . 

In these formulas, 

K == (hG - U. + e - a + 1)(hb - U. + e - b + 1)(h" - Uf + f - a + l)(hb - Uf + f - b + 1) 
(h" - h. + c -.a)(h" - h. + c - a + 1)(hb - he + c - b)(hb - h. + c - b + 1) 

X (he - Ua + d - C)(Ua - VI + 2 - d)(ua - V2 + 3 - d)(Ud + 4 - d) • (AS) 
(ua - U. + e - d)(Ud - U. + e - d + 1)(ua - U, + f - d)(Ud - Uf + f - d + 1) 
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Tables o~ CIebsch-Gordan coefficients of SU (3) for the reduction of the product (X, p) ® (3, 0) of 
representatIons of SU(3) are constructed by use of the tensor method. Derivations of some crossing 
and 8~etry relations for the SUa Clebsch-Gordan coefficients are given, and the Clebsch-Gordan 
coefficlents for the product (p, X) ® (0,3) are related to those mentioned above. The phase convention 
used in compiling the tables is stated and explained. 

INTRODUCTION 

ON account of the great importance recently 
attained by the group 8U(3) in the field of 

high-energy physics,l the job of constructing tables 
of "Clebsch-Gordan (CG) coefficients" for this group 
has become of practical interest. Various authors2 
have made numerical tables for the reduction of 
products of some low-dimensional representations. 
Since no general expression is known yet for any 
arbitrary CG coefficient of 8U(3), the next thing 
one may attempt is to obtain general algebraic ex­
pressions for the CG-coefficients for reduction of a 
product of an arbitrary representation (X, JL) with 
a low-dimensional representation of practical in­
terest. It is now well-known that unitary irreducible 
representations (UIR's) of dimensionality 8 and 10 
playa special role in the "eightfold-way" of 8U(3) 
symmetrylb.o-being the representations definitely 
"filled" by experimentally well-established meson 
and baryon states. An algebraic tabulation of the 
CG-coefficients for reduction of the product of the 
UIR (X, JL) and the UIR (1,1) of dimensionality 8 

* R~s~rch supported in part by the U. S. Atomic Energy 
COmmISSIOn. 

t On leave of absence from Tata Institute of Fundamental 
Research, Bombay, India. 

. ; Present Address: Palmer Physical Laboratory, Princeton 
University, Princeton, New Jersey. On leave of absence from 
the Atomic Energy Establishment Bombay/ India. 

1 (a) M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. 
Phys. (Kyoto), 22, 715 (1960); 23, 1073 (1960); O. Klein, 
Arkiv Fysik 16, 191 (1959); J. E. Wess, Nuovo Cimento 15, 
52 (1960); Y. Yamaguchi, ProgI'. Theoret. Phys. (Kyoto) 
Suppl. 11, 1, 37 (1959). (b) Y. Ne'eman, Nucl. Phys. 26, 222 
(1961). (c) M. Gell-Mann, Phys. Rev. 125, 1067 (1962). 
(d) S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962). 

I (a) S. Sawada and M. Yonezawa, Progr. Theoret. Phys. 
(Kyoto) 23, 662 (1960); M. A. Rashid, Nuovo Cimento 26, 
118 (1962). (b) A. R. Edmonds, Proc. Roy. Soc. (London) 
A268, 567 (1962). (c) Y. Dothan and H. Harari, Israel 
Atomic Energy Commission, Report IA-777 (1963); P. Tar­
janne, CarnegIe Institute of Technology Report NYO 9290A 
(1963); also Ann. Acad. Sci. Fenn., AVI Physica 105 (1962). 
(d) J. J. deSwart, Rev. Mod. Phys. 35, 916 (1963). (e) P. 
McNamee and F. Chilton, Rev. Mod. Phys. 36,1005 (1964). 

has very recently been made by Kuriyan, Lurie, 
and Macfarlane.3 In the present paper we give a 
tabulation for the reduction of the product of (X, JL) 
with the UIR's (3, 0) and (0, 3) of dimensionality 
10. 

The present work is motivated both by practical 
as well as methodological interest. The former aspect 
has already been touched upon in the foregoing. The 
methodological interest derives from the fact that 
our results have been obtained using purely tensor 
methods, which turn out to be particularly simple 
for the 8U(3) group. In a recent paper4 (hereafter 
referred to as I) we presented a construction of 
orthonormal basic states of an arbitrary UIR (X, JL) 
in terms of general irreducible tensors. This con­
struction allows one to derive several algebraic re­
results for the group in a simple manner, some ex­
amples of which were given in 1. In the derivation 
of the results of the present work we have em­
ployed these tensor methods. Some time ago Moshin­
sky5 had obtained an expression in the form of a 
series for the CG coefficients for the product (A, JL) ® 
(v, 0), a case general enough to cover the product 
(X, JL) ® (3, 0) to be discussed here. However, since 
the methods employed by Moshinsky are more ab­
stract, we feel that our derivations of the closed 
algebraic expressions for the CG coefficients tabu­
lated here are of immediate interest; and this in­
terest is the more, since we have taken care to in­
corporate a phase convention which is becoming 
rapidly standardized.6 We also take this occasion 

a J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, J. Math. 
Phys. 6, 722 (1965). 

«N. Mukunda and L. K. Pandit, J. Math. Phys. 6, 746 
(1965). This paper is referred to as I in the present work. We 
refer the reader to this paper for details of notation and 
results used herel as also for more references on our subject. 

6 M. MoshinSky, Rev. Mod. Phys. 34, 813 (1962). 
8 For a detailed discussion of the question of phases, see 

J. G. Kuriyan et al., Ref. 3. 
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to derive by the tensor method some useful crossing 
and symmetry relations for the CG coefficients.7 

Section I contains a discussion of the UIR's (3,0) 
and (0, 3) of SU(3), of the direct products (3, 0) ® 
(A, p,) and (0, 3) ® (p" A), and a definition of the 
corresponding CG coefficients. Section II contains 
a discussion of the behavior of the basic states of a 
UIR under complex conjugation. This leads to an 
important "crossing relation" for CG coefficients. 
It is also shown how the CG coefficients for the prod­
uct (0, 3) ® (p" A) may be directly obtained from 
those for the product (3, 0) ® (A, p,). Finally, a 
clear statement of the phase convention to be used 
in defining CG coefficients, and a complete list of 
relations between the different CG coefficients, are 
given. In Sec. III we outline the method of deriva­
tion of the CG coefficients. The results of the com­
putations are given in Tables V-XIV. (All tables 
cited herein are to be found, in numerical order, 
at the end of the article.) 

SECTION I 

The decuplet representation of SU(3) is the ten­
dimensional unitary irreducible representation (UIR) 
denoted, in the highest weight notation, by (3, 0). 
It is provided by a symmetric third-rank tensor 
sabe with three upper indices. [We use here the 
notation and terminology of I, see Ref. (4)]. The 
isospin and hypercharge content of this UIR may 
be conveniently displayed as in Table I, which 
gives the orthonormal basic states of (3, 0) in terms 
of sabe. (See Appendix B of I). 

An irreducible tensor operator of the decuplet type 
is a set of ten operators labeled and transforming 
exactly like the standard orthonormal basic states 
of the UIR (3, 0), under transformations of SU(3). 
(By "standard," we refer to the Biedenharn phase 
convention for the matrix elements of the generators 
of SU(3), in any UIR.)8 This definition of a decuplet 
tensor operator can be converted in the usual man­
ner into a standard set of commutation relations 
between these operators and the generators of SU(3). 
We refer to the quartet of operators with I = ! as 
eM, M = ±!, ±!; the triplet with I = 1 as ::1M , M = 
±1, 0; the doublet with I = ! as :OM, M = ±!; 
and the singlet with I = 0 as S. 

We go on now to consider the direct product of 
the UIR (3, 0) and an arbitrary UIR (A, p,) of SU(3). 
Such a product can be reduced into a direct sum of 
UIR's of SU(3), according to 

(A, p,) ® (3, 0) = LEIl (A', p,'). (1.1) 

7 See also J. J. deSwart, Ref. 2(d). 
8 L. C. Biedenharn, Phys. Letters 3, 69 (1962). 

The contents of the rhs of (1.1) may be found by 
several methods, such as the use of Young's dia­
grams,9 the technique of Speiser,10 or the method of 
tensors.ll We find that, in general, the rhs of (1.1) 
consists of ten distinct UIR's of SU(3). They are 
listed in Table II, along with the construction of the 
corresponding irreducible tensors. As before, the 
UIR (3, 0) is described by the tensor sab., while 
the UIR (A, p,) is given by an irreducible tensor 
T m

" ·n ••• with A upper and p, lower indices. The oper­
ations indicated in Table II must be followed by 
symmetrization and the removal of traces, when 
necessary. The tensor fabe is the usual completely 
antisymmetric invariant tensor of SU(3); note that 
the numerical values of its components are unaf­
fected by any particular phase convention for upper 
and lower tensor indices, such as that adopted in I. 
However, as in I, the process of contraction of an 
upper and a lower tensor index must, by definition, 
always be done with the tensor g: of I, even when an 
index being contracted appears in fabc. 

Now let (A', p,') denote anyone of the ten UIR's of 
Table II. The orthonormal basic states of (A', p,') 
are then obtained from direct products of basic 
states of (A, p,) and (3, 0), by the use of the corre­
sponding Clebsch-Gordan (CG) coefficients of SU(3). 
We use the notation of Kuriyan et al.3 and write this 
CG coefficient in the following form: 

C(Ap, 30 A'p,' ; IMY JNZ I'M'Y'). (1.2) 

The labels I, M, Yare, respectively, the isospin, 
Z-component of isospin, and hypercharge labels for 
states of (A, p,); the labels JNZ and I'M'Y' refer 
similarly to (3, 0) and (A', p,'), respectively. Note that 
since no UIR (A', p,') appears more than once in 
Table II, the labels appearing in (1.2) are suf­
ficient and specify unambiguously the corresponding 
CG coefficient. 

The factorization theorem of Racah12 allows us to 
write (1.2) as the product of a CG coefficient for 
isospin and an "isoscalar factor" as follows: 

C(Ap, 30 A'p,'; IMY JNZ I'M'Y') 

= C(IJI';MNM')U(}..p,30}..'p,';IY JZ I'Y'). (1.3) 

The matrix elements of a decuplet tensor operator 
S, between states belonging to (A, p,) and (A', p,'), can 
be expressed in terms of the CG coefficient (1.2) 
and a single reduced matrix element. Thus 

9 See, for example, A. R. Edmonds, Ref. 2(b). 
10 (a) D. R. Speiser, Proceedings of the Istanbul Summer 

Scho~IJ Istanbul (1962). (b) Also J. J. deSwart, Ref. 2(d). 
11 .N. Mukunda and L. K. Pandit, Progr. Theoret. Phys. 

(Kyoto), 34, 46 (1965). 
12 G. Racah, Phys. Rev. 76, 1352 (1949). 
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(A'P.'; I'M'Y' I~NI AP.; IMY) = C(AP. 30 A'P.' ; IMY !Nl I'M'Y')(A'p.' IISII AP.), 

(A'P.'; I'M'Y' I:JNI AP.; IMY) = C(AP. 30 A'P.' ; IMY INO l'M'Y')(A'p.' IISII AP.), 

(A'P.'; I'M'Y' I:ONI AP.; [MY) = C(AP. 30 A'P.' ; IMY tN,-1 I'M'Y')(A'p.' IISII AP.), 
(1.4) 

(A'P.'; l'M'Y' lsi AP.j IMY) = C(AP. 30 A'P.' j [MY 00,-2 I'M'Y')(A'p.' IISII AP.). 

We present the isoscalar factors U appearing in 
(1.3), in a series of ten Tables (in numerical order at 
the end of this paper), corresponding to the ten 
dases of Table II. In Sec. III, we describe briefly 
the method of evaluation of the isoscalar factors. 
In Sec. II, among other things, we relate the CG 
coefficient (1.2) required for the reduction of (A, p.) ® 
(3, 0), to the following one: 

C(30 AP. A'j.L' ; JNZ IMY I'M'Y'), (1.5) 

required for the reduction of (3, 0) ® (A, j.L). 

We close the present section with a few comments 
on the UIR (0, 3). The ten-dimensional UIR (0,3) 
of SU(3) is equivalent to the complex conjugate of 
the UIR (3, 0), and is provided by a symmetric 
tensor Sobe with three lower indices. The IMY 
content of (0, 3) is obtained from that of (3, 0), by 
changing the sign of Y. 

Let (p., A) be any UIR of SU(3). [The UIR (p., A) 
is the complex conjugate of the UIR (A, p.) that ap­
pears in (1.1). For the sake of symmetry, we con­
sider here (p., A) rather than (A, p.).] Then analogously 
to (1.1), we have the reduction 

(p., A) ® (0,3) = L: (p.', A'). (1.6) 
E9 

The UIR's (p.', A') that appear on the rhs of (1.6) 
are just the complex conjugates of those that appear 
on the rhs of (1.1); and the allowed values of p.' and 
A' in (1.6) are the same as those given by Table II. 
The CG coefficient for the reduction (1.6) is written 

C(p.'A 03 P.'A' ; IMY JNZ I'M'Y'), (1.7) 

and will be related, in Sec. II, both to the CG coef­
ficient (1.2) and to one of type 

C(03 j.LA P.'A' ; JNZ IMY ['M'Y'), (1.8) 

required for reducing the product (0, 3) ® (p., A). 

SECTION II 

In this Section, a derivation is given of a "crossing 
relation" for the CG coefficient (1.2),13 whereby four 
of the cases in Table II may be directly related to 
four others. In addition, the phase convention to 
be used in order to completely define the CG coef-

13 See also: (a) J. J. deSwart, Ref. 2 (d); (b) A. J. Mac­
farlane, N. Mukunda, and E. C. G. Sudarshan, J. Math. 
Phys. 5, 576 (1964). 

ficients (1.2) and (1.7), and the relationship of these 
to one another and to (1.5, 8) will be made clear. 

Consider first the construction of an invariant 
from the direct product of two UIR's that are com­
plex conjugates of one another, namely (A, p.) and 
(p., A). Denote the corresponding irreducible tensors 
by T';;::: and S';::::, respectively, and the correspond­
ing auxiliary quantities (in the sense of I) by 

and 

respectively. [Here both 'iJ!I~ and ~I~ include the 
final choices of phases made in I, Appendix B, Eq. 
(Bl).] The invariant fJ that can be formed from T 
and S is obtained by contracting all upper indices 
in T with all lower indices in S, and vice versa, that 
is: 

fJ = T:~:::S:r:: . (11.1) 

We may now go through the same sequence of steps 
as employed in Sec. III of I, to successively rewrite 
(II 1) in terms of .I,;,m, ..Io~,m, then .I.I(;';,) ..IoI(;';,) 

. "'lAm., 'f'hm. Y'M, '¥1M 

and finally 'iJ!I~, ~I~. In doing so, we must take 
account of the signs introduced by the tensor g:in 
the contractions in (11.1). In this manner we find 

fJ = L: L: [N1(AP.; ilmd2m2)]2 

= L: L: (- I)~-HM+;'-;'1/;[Jj';.)cp~(/.;j,) (II.2) 
id. 1M 

= L: (_I)M-!Y+I(~-X)'iJ![~~~'~Y. 
IMY 

At this stage, we conveniently add a (A, j.L)-dependent 
phase factor to (II.2), normalize it, and finally 're­
define 

[J = [(A + 1)(p. + 1)(A t j.L + 1) li 
(II.3) 

The phase chosen in (II.3) is such that it is + 1 
when I, M, Y correspond to the highest weight in 
the UIR (A, p.): I = M = teA + p.), 'A = !(A - p.). 
The normalizing factor is given by the dimensionality 
of the UIR (A, p.): 

D(A, p.) = (A + 1)(p. + 1)[!(A + p.) + 1]. 
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The expression (II.3) for lJ shows explicitly how 
one is to construct a normalized invariant state, given 
states '1' and <I> transforming in the standard manner 
according to the UIR's (A, p.) and (p., A), respectively. 
It may be put to several uses. We deduce that if 
'1'I~ transforms according to the UIR (A, p.) and if 
we define <I>I~ by 

<I>~ = (_1)-M+1Y-l(A+2~)['1'~',;:/]*, (II A) 

then the <I>~ will transform in the standard manner 
according to (p., A).14 The asterisk in (II.4) means 
complex conjugation if we deal with ordinary com­
plex numbers, and Hermitian conjugation if we are 
dealing with tensor operators. 

We next use (II.3) to derive the "crossing rela­
tions" for CG coefficients, following the general 
method of Macfarlane13

(b ' et al. Let (A, p.), (A", p."), 
and (A', p,') be three UIR's such that the third is 
contained only once in the direct product of the first 
two. It then follows that (p., A) appears only once in 
the product of (p.', X') and (A", P,',).13(b) Suppose next 
that '1', <I>, z: are quantities transforming, respec­
tively, according to (A, p.), (A", p.") and (p.', X'). 
(Note that the last UIR is (P,', A'), not (A', p.')!) 
Then there exists a unique (up to a phase) nor­
malized state in the triple product space of '1', <I>, Z:, 
that is invariant under SUa. On comparing two 
alternative ways of constructing this state, namely, 
first coupling the UIR's (X, p.) and (A", P,") to 
(X', p.'), and then using (II.3) to make an invariant, 
or first coupling (p.', X') and (X", p.") to (p., A) and 
then using (II.3), we obtain the relationship 

C(AP. A"P." A'P.'j IMY JNZ I'M'Y') 

= 7J( _1)!(X'+2~'+2A+~) +!Z-N[D(A', p.')/ D(A, p.)]l 

X C(p.'A' A"P." P.Aj I' -M' - Y' JNZ I -M - Y). 
(II.5) 

In this equation, 7J is a phase factor dependent 
only on variables of the type A, p.. [For the explicit 
and general derivation of (II.5), including the gen­
eralization to the case that (A', p.') appears more than 
once in (A, p.) @ (X", p."), see Ref. 13(b).] Using (II.5) 
for the case (A", p.") = (3, 0), we find that the CG 
coefficients for cases A, B, E, H, of Table II may be 
simply expressed in terms of those for cases D, C, 
G, J, respectively, while cases F, K are not related 
to any other cases. [A similar situation clearly occurs 
for (A", p.") = (0, 3).] However, for ease in applica­
tions, we have given separate and full tables for all 
the ten cases of Table II. The relationship for 

14 See also D. Lurie and A. J. Macfarlane, J. Math. Phys. 
5,565 (1964); J. J. deS wart, Ref. 2(d). 

isoscalar factors that follows from (II.5) is 

U(AP. 30 A'P.' j IY JZ I'Y') 

X [{D(A', p.')·(2I + 1)}/{D(A, p.)(2I' + l)}]t 

X U(p.'A' 30 P.A j I' - Y' JZ I - Y). (II.6) 

We deal next with CG coefficients of type (1.7). 
Since we can always choose phases of states so that 
all CG coefficients are real, straightforward applica­
tion of (II.4) leads to 

C(AP. 30 A'P.' ; IMY JNZ I'M'Y') 

= ~C(p.A 03 P.'A' jI-M- Y J-N-Z I'-M' - Y'), 

(11.7) 

whereby CG coefficients for the product (p., A) @ 
(0,3) are given in terms of those for (X, p.) @ (3, 0).2(d) 
Here ~ is a phase again depending only on the UIR's 
involved. In deriving (II.7), one uses the fact that 
the CG coefficients appearing therein vanish unless 
M' = M + N, Y' = Y + Z. The crossing relation­
ship for the (0, 3) cases can be read off directly from 
(11.5), or obtained on combining (II.7) with the 
crossing relationship for the (3, 0) case. We write 
it in the form 

C(p.A 03 P.'A' j IMY JNZ I'M'Y') 

= 7j( _1)1(x·+2~·+2x+~Hz+N[D(p.', A')/ D(p., A)]t 

X C(A'P.' 03 AP. j l' -M' - Y' JNZ I -M - Y). 

(II.8) 

As in (II.5), so in (II.8) we have a phase factor 7j 

to be evaluated. 
We can relate the CG coefficient (1.2) to (1.5). 

Either from their properties, as invariant tensors, or 
by the method of Kuriyan et al.,a we deduce that 
the two may differ at most by a phase r, and write 

C(Xp. 30 A'P.'; IMY JNZ I'M'Y') 

= rC(30 AP. A'P.' j JNZ IMY l'M'Y'). (II.9) 

Similarly, for (1.7) and (1.8), one has 

C(P.A 03 P.'A' j IMY JNZ l'M'Y') 

= fC(03 P.A P.'A' j JNZ IMY I'M'Y'). (11.10) 

The last relationship between CG coefficients that 
we consider is the following: 

C(30 AP. A'P.' j JNZ IMY I'M'Y') 

= ~C(03 P.A P.'A' j J -N -Z I -M - Y I' -M' - Y'). 

(II.ll) 
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The determination of the six phase factors ap­
pearing in (II.5-11.11), as well as the complete 
definition of the CG coefficients themselves, depends 
on the choice of a phase convention for CG coefficients 
of SU(3). We follow the convention of Kuriyan etal.,3 
in whose work an excellent discussion of this question 
may be found. Before stating this convention for 
our case, a brief discussion is desirable. For fixed 
values of (X, p.) and (X', p.'), the relative signs of the 
CG coefficients (or isoscalar factors) of (1.2) are 
completely fixed by the standard choice of the matrix 
elements of the SU(3) generators in any U1R, namely 
the Biedenharn conventionS; similarly for the CG 
coefficients of type (1.5), (1.7) or (1.8). For given 
(X, p.) and (X', p.'), the problem remains of choosing 
in some definite way the sign of anyone of the CG 
coefficients (1.2) for a definite choice of the variables 
of type I, M and Y (making sure, of course, that 
the corresponding CG coefficient does not vanish). 
A similar choice must be made in each of the cases 
(1.5), (1.7), (1.8). The prescription of Kuriyan et al.,3 
adapted to the present case, is the following: Let 
1, M, Y and 1', M', Y' denote the labels of the 
highest weight states of the U1R's (X, p.) and (X', l), 
respectively. Then for each (X', p.') there is always one 
(and only one) allowed set of values for JNZ such 
that (1.2) does not vanish. We demand 

C(Xp. 30 X'p.' ; 1MY JNZ 1'M'Y') > O. (II.12) 

A similar requirement is made for the CG coefficients 
(1.7) : 

C(p.X 03 p.'X' ; 1MY JNZ 1'M'Y') > O. (II.13) 

The requirements (II.12) and (II.13) suffice for an 
unambiguous determination of the corresponding 

C(Xp. 30 X'p.' ; IMY JNZ I'M'Y') 

CG coefficients, for two reasons: Firstly, because the 
weights that occur in both (3, 0) and (0, 3) are simple, 
and so the labels JNZ that appear in (11.12) and 
(II.13) are unique, if they exist at all. Secondly, we 
have explicitly verified from our tables that the 
particular CG coefficients (11.12) and (II.13) never 
accidentally vanish. 16 .16 

For the CG coefficients (1.5) [and similarly for 
(1.8)] in general the weights of the U1R "in the mid­
dle" (X, p.) are nonsimple. If we fix JRZ and 1'M'Y' 
to refer to the highest weights of (3, 0) and (X', p.'), 
respectively, this determines M, Yin (1.5), but there 
are many values of I such that (1.5) does not vanish. 
We pick the highest value of I that occurs in (X, p.) for 
the given Y and call it 1. (Note that 1 is not, in 
general, the highest isospin in (X, p.).) We then de­
mand that 

C(30 Xp. X'p.' ; JRZ iMY 1'M'Y') > O. (II.14) 

Similarly for (1.8), we demand 

C(03 p.X p.'X' ; JRZ iMY i'M'Y') > O. (II.15) 

We have verified explicitly with the help of our 
tables that, with the choice of 1 prescribed above, 
the CG coefficients appearing in (II.14) and (II.15) 
never vanish accidentalIy.16 Equations (II.12)­
(II.15) define the phase conventions for the CG 
coefficients dealt with here. 

All the phase factors appearing in (II.5)-(11.11) 
can now be determined, with occasional use of the 
tables. After explicit evaluation, it turns out to be 
possible to write each of the phase factors analyti­
cally in terms of X, p., X', p.'. For conciseness, we give 
below all six of the equations in their final forms: 

= (_I)l(A'-~'+~-A) +iZ
-

N
.[ ~~~: :;> J. C(p.'X' 30 p.X i I' - M' - Y' JNZ 1-M - V), 

C(Xp. 30 X'p.' i IMY JNZ I'M'Y') = (-1)~'-~·C(30 Xp. A'P.' i JNZ IMY I'M'Y'), 

C(Xp. 30 X'p.' i IMY JNZ I'M'Y') = (-1/'-A+1·C(p.X03 p.'X' ; I -M - Y J -N -Z I'-M'- V'), 

C(p.X 03 p.'X' j IMY JNZ I'M'Y') 

= (_l)i Z
-

N +1·[D(A', p.')/D(X, p.)]t·C(X'p.' 03 Xp. i I'-M'- Y' JNZ I-M- V), 

C(p.X 03 p.'X' i IMY JNZ I'M'Y') = (-lY'-~C(03 p.X p.'X' ; JNZ IMY I'M'Y'), 

C(30AP.X'P.' iJNZIMYI'M'Y') = (-1)A'-A+1·C(03p.Ap.'X' jJ-N-ZI-M-YI'-M'-Y'). 

(11.16) 

15 As stated by Kuriyan et al. (Ref. 3), "a CG coefficient is said to vanish accidentally if the vanishing is not the result 
of a selection rule." 

18 The following point is worth noting. As the numbers (X', Il') range over the ten cases listed in Table II, the 
labels J, N, Z, that appear in (11.12) range over the ten "weights" of the UIR (3,0). Thus a one-to-one correspondence 
is set up between the irreducible constituents of (X, Il) 0 (3, 0) and the "weights" of the UIR (3, 0). This correlation 
has been stated, for the general case, by L. C. Biedenharn, Phys. Letters 3, 254 (1963). It has been proved in Ref. 11 
by the present authors, and also independently by B. Prezios!z,. A. Simoni and B. Vitale, preprint, Naples (1964). See Ref. 3 
for the analogous situation in the case of the product (X, Il) \2SI (1, 1). It may be noted that the graphical methods of Speiser 
[see ref. lO(a)] also implies this correlation. 
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These relations can easily be written in terms of 
isoscalar factors. 

SECTION ill 

In this Section we outline the method of computing 
the isoscalar factors corresponding to the CG coef­
ficients (1.2), namely 

U(Ap. 30 A'p.' ; IY JZ I'Y'). (III.I) 

We pick just one case, case (J) of Table II, for 
illustration, as all the other cases follow the same 
pattern. The method is the same as that used, and 
explained in detail, in I for the derivation of the 
matrix elements of the octet operators. Since, for any 
particular case, we calculate as a first step the iso­
scalar factors U only up to an overall normalization 
factor and an overall phase characteristic of the 
particular case, the method of calculation to be 
now described leads us first to the evaluation of a 
set of auxiliary quantities V which may be defined 
as: 

V(Ap. 30 A'p.' ; IY JZ I'Y') 

= E[N(Ap.; A'P.')rlU(AP. 30 }..'p.' ; IY JZ I'Y'). 

(III.2) 

Here, N(Ap.; A' p.') is a positive normalizing factor 
independent of the IY-type variables, and E is a 
sign factor, ±1, also independent of the IY-type 
variables. For each (A', p.'), i.e., each case of Table 
II, we first obtain the quantities V, then determine 
E by means of the phase convention of Sec. II, 
namely Eq. (I1.I2), and finally determine N(Ap.; A'p.') 
by the requirement that U be normalized. This gives 

[N(Ap.; A' p.')r2 

= L L [V(Ap. 30 A' p.' ; I Y JZ I' y,)]2. (IIL3) 
IY JZ 

The sum in (I1L3) is. of course, to be carried out 
keeping 1', Y' fixed: as a matter of convenience it 
turns out best to choose I' = O. 

Case J: (A', p.') = ex - 2, p. + 1). 

The first step is to construct an irreducible tensor 
of type (A - 2, p. + 1), in the product space of the 
irreducible tensors 8 [of type (3, 0)] and T [of type 
(A, p.)]. Following Table II, we write down 

(III.4) 

By construction, R is a tensor of type (A - 2, p. + 1), 
completely symmetric in its upper indices, and com­
pletely traceless. It is symmetric in the indices 
nl ... n~-1 among themselves, and also with respect 

to a, {3; it will become irreducible if we symmetrize it 
with respect to interchanges of any two lower indices, 
one appearing before and one after the semicolon. 
This is straightforward. Denote the resulting ir­
reducible tensor by P, and the corresponding (or­
thogonal and relatively normalized) basic states by 
\{I~Y. To compute the functions V of (I1L2), it 
suffices to consider \{IfY, which, according to Eq. 
(B.2) , of Appendix B of I, is given in terms of the 
tensor P by 

,T"IY N'(I Y)N'(j'" )p(2i"O,X'-2id 
"rI = 3, 1 IJI1212 (O.2i.,~'-2i.), 

where 

jl = !I + i Y + HA' - p.'), 

j2 = !I - i Y - HA' - p.'); 

(IIL5) 

(IIL6) 

and where the N' -factors are the same as the N­
factors of I with A, p. replaced by A', p.'. Note that 
(I1L5) does not yet contain the final choice of phases 
made in Eq. (Bl) of I, but corresponds rather to 
Eq. (B2) of 1. The final phases will be incorporated 
later. As explained in I, in (I1L5) we have that com­
ponent of P which has 1 as 2jl upper and 0 lower 
indices, 2 as 0 upper and 2j2 lower indices, and 3 as 
(A' - 2jl) upper and (p.' - 2j2) lower indices. Now 
symmetrization of R to obtain P involves only a 
proper combinatorial counting. Suppressing for the 
moment the upper indices for which there is no com­
plication in the present case, we have the result 

P(o.2i.,~·-2i.) = (2j2)(2j2 - I)R(o,2i._2,~·-2j.);22 

+ 2(p.' - 2j2)(2j2)R(o.2i.-l.~·-2i.-l) ;23 

+ (p.' - 2j2)(P.' - 2j2 - 1)R(o.2i •• ~·-21t-2) ;33' 

(III.7) 

We have introduced here the notation R(z,v •• ) ;a{l for 
the component of R with x indices equal to 1, y 
indices equal to 2, and z indices equal to 3, before the 
semicolon. The components of R occurring in (I1L7) 
can now be expressed in terms of 8 and T, and we 
have to look for the terms involving 8 111

, v'38113
, 

v'38133 and 8333 to extract all the functions V. For 
example, the terms in \{I'~Y containing 8 111 are found 
to be 

8 111N'(I Y)N'(J' J' J' J' )[2J' (2J' I)T(2i, .O.X-2id 3, 1 1 122 2 2 - (1.2;.-2,~-2i.+O 

2(2 ' )f.. 2' + I)T(2i"I,X-2i,-O - 12 \}4 - h (1.2i.-l,~-2i.) 

+ (p. - 2j2 + 1)(p. - 2j2)T~~:~;!:;:::~;::::~n. (IlLS) 

Further, in terms of the orthonormalized states 
\{II; in the space of the tensor T [cf. Eq. (B2) of 
I], we have 
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l' = I - !, I - ~. (111.9) 

X N 2(jl + !, j2, I')[Na(I', Y - l)rI-q,i~{-\ l' = 1+ !, I - !, I - ~. (III.1O) 

Tg:;i!:~:::;~::::~~ = [NI(jl + 1, ji - 1, j2 + !, j2 - !>r1 L: C(ji + 1, j2 + !, 1'; ji - 1, j2 - !, I - ~) 
I' 

I' = I ± !, I ± ~. (111.11) 

All the information required for calculating the four functions V (X,u 30 X - 2, ,u + 1; IY ! 1 l' Y') is now 
contained in Eqs. (III.8)-(III.11). The N-factors are given in I and the CG coefficients of isospin are 
well known. For instance, on combining and simplifying all the factors, we find the term in wfY 
containing S1llw~~I,Y-I to be 

slllwi~l' Y-I[(2I + 2)(21 + 3)r l 

X { (,u + 1) 6g(g - l)(e + l)e(d + 2)(a + 2)(b + 3)(b + 2)(b + l)}i 
X(X - l)(X + ,u + 1) (21 + 4)(21 + 1) . 

(111.12) 

The symbols a, b, d, e, g are defined in Table III. At this point we incorporate the final phase con­
vention of I [Eq. (B1)], by setting 

w~·Y = (-1) l-iY-i(A+2~)IX,u; I, M, Y), wii'Y = (_I)I-iY-!(X'+2~') IX',u'; I, M, Y). (111.13) 

Dropping a common (X, ,u)-dependent factor, since we are still calculating the result up to an overall nor­
malization factor, we identify from (III.12): 

C(I + !,!, I; 1- !,!, I)V(X,u 30 X-2,,u+I ; I+!,Y-1!I IY) 

= [(21 + 3)(21 + 2)rl{6g(g - I)(e + l)e(d + 2)(a + 2)(b + 3)(b + 2)(b + I)}i. (1I1.14) 
(21 + 4)(21 + 1) 

After making the substitutions I ---t I - ~, Y ---t Y + 1, we finally get 

V(X 30 X-2 +1' Iy.aI I-.a Y+l) = (_){(a + I)(b + I)b(b - I)de(e - I)(g + 2)(g + I)}i (111.15) 
,u ,,u, 2 2, (21)(21 - 1)(21 - 2) . 

In this manner all the V-functions have been evalu­
ated. As explained earlier, once all the V-functions 
are known for a particular case, one finds the phase 
E and normalizing factor N (X,u; X' ,u'), which then lead 
to the isoscalar factors of the SU(3) CG coefficients. 
The functions U' = E V and N are presented in 
Tables V-XIV. 

Structure of Tables V-XIV 

We present in Tables V-XIV, the isoscalar factors 
of the SU(3) CG coefficients for (X, ,u) ® (3, 0) cor­
responding, respectively, to the ten cases A to K of 
Table II. The plan of these tables is explained by 
Table IV, which shows that a common overall 
positive normalization factor N(X,u; X',u') for each 
case is given at the bottom of the relevant table. 
The algebraic expressions entered in each table, 
when multiplied by the corresponding normalization 
factor give the isoscalar factors U. Thus, calling 

these algebraic expressions as U', we have 

U(X,u 30 X',u' ; IY JZ 1'Y') 

= N(X,u; X',u')U'(X,u 30 X',u' ; IY JZ I'Y'). 

The symbols used in writing the results are listed 
in Table III. 

To obtain the CG coefficients, or the isoscalar 
factors, for the products (3, 0) ® (X, ,u), (.u, X) ® 
(0,3) and (0, 3) ® (.u, X), one has simply to make use 
of Eqs. (11.16) along with the tables given here for 
(X, ,u) ® (3, 0). 
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(A', 1") 

A. (A + 3, 1') 
B. (A + 2, I' - 1) 
C. (A + 1, I' - 2) 
D. (A, I' - 3) 
E. (A + 1, I' + 1) 
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G. (A - 1, I' - 1) 
H. (A - 1, I' + 2) 
J. (A - 2, I' + 1) 
K. (A - 3, I' + 3) 

PANDIT AND N. MUKUNDA 

TABLE I. The UIR (3, 0). 

I. = M 

-! 0 +! +1 +! 

V3"SI22 v'3S112 S1l1 1= !: ~M 
v'6S !23 v'3S113 I = 1: ~M 

v'3S233 v'3S133 I = !: 5)M 
S333 1= 0: S 

TABLE II. Reduction of (A, 1') @ (3, 0). 

Remarks 

1',=0 
I' ,= 0, 1 

I' ,= 0, 1, 2 
A'=O 

A ,= 0; I' ,= 0 
A ,= 0; I' ,= 0, 1 

A ,= 0, 1 
1\ ,= 0, 1; I' ,= 0 

A ,= 0, 1,2 

~Y 

Construction 

sabcT';:::: 
sahcT:;::. 

sab c T:;'~·: .. 
SabcT:;"c',;" . 

Eapnsab c 1'~"': : : : 
Eapnsab C TbPn": : : : 

EapnsabcT6~·,·: .. 
Eapn fb qn' sab c T~q,":: : : 
EapnEt>qn,sabCT tnq

,",;::: 

EapnEbqn' fern' ,sabCT~q,r,n:::: 

TABLE IV. Plan of the tables of isoscalar factors. 

~1 (A, 1') -> (A', 1") 

TABLE III. Notation employed in tables of +! U'(Ap. 30 A'p.'; lY !1 1+ !, Y + 1) 

+! 
+1 
-! 
-! 
+1 

o 
-1 

+i 
-! 

o 

isoscalar factors. +! U'(Ap. 30 A'p.'; IY !1 I+!, Y + 1) 
+1 -! U'(Ap. 30 A'p.'; IY !1 1- !, Y + 1) 

a = l(A + 21') + (I + !Y) -! U'(Ap. 30 A'p.'; lY !1 1- !, Y + 1) 
b = !(2A + 1') + (I - !Y) +1 U'(A", 30 A'p.'; IY 10 1+ 1, Y) 
d = !('" - A) + (I - i Y) 0 0 U'(A", 30 A'''''; IY 10 IY) 
e = l(A - "') + (I + iY) -1 U'(Ap. 30 A'''''; IY 10 1- 1, Y) f = !(2A + 1') - (I + iY) 
g = i(A + 21') - (I - iY) -1 +! U'(A", 30 A'p.'; IY !, -1 I+!, Y - 1) 

-! U'(Ap. 30 A'p.'; lY i, -1 1 - !, Y - 1) 

-2 0 U'(Ap. 30 A'p.'; lY 0, -2 I, Y - 2) 

N(A",; A',,,,') 

TABLE V. Isoscalar factors for (A, ",) @ (3, 0) -> (A + 3, ",). 

(A, 1') -> (A + 3, 1') 

[(21 + 4)(21 + 3)(21 + 2)]-'[(a + 4)(a + 3)(a + 2)(b + 4)(b + 3)(b + 2)(e + 3)(e + 2)(e + 1)]1 
[(21 + 3)(21 + 2)(21)]-'[3(a + 3)(a + 2)(b + 3)(b + 2)d(e + 2)(e + 1)(f + 1)(g + 1)]1 
[(21 + 2)(21)(21 - 1)]-![3(a + 2)(b + 2)d(d - I)(e + 1)(f + 2)(f + 1)(g + 2)(g + 1)]1 
[(21)(21 - 1)(21 - 2)]-'[d(d - 1)(d - 2)(f + 3)(f + 2)(f + l)(g + 3)(g + 2)(g + 1)]1 

[(21 + 3)(21 + 2)]-1[3(a + 3)(a + 2)(b + 4)(b + 3)(b + 2)(e + 2)(e + 1)(f + 1)]i 
[21(I + 1)]-![3(a + 2)(b + 3)(b + 2)d(e + 1)(f + 2)(f + 1)(g + I)]i 
[21(21 - I)]-![3(b + 2)d(d - 1)(f + 3)(f + 2)(f + I)(g + 2)(g + 1)]i 

[21 + 2)-![3(a + 2)(b + 4)(b + 3)(b + 2)(e + 1)(f + 2)(f + 1)]' 
[21]-![3(b + 3)(b + 2)d(f + 3)(f + 2)(f + 1)(g + 1)]l 

[(b + 4)(b + 3)(b + 2)(1 + 3)(f + 2)(f + 1)]' 

N(AP.; A + 3, 1') = (A + 3)(A + 2)(A + l)(A + '" + 4)(A + '" + 3)(A + p. + 2)]-1 
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TABLE VI. Isoscalar Factors for (A,!,) ® (3, 0) --> (A + 2, I' - 1). 

(A,!,) --> (A + 2, I' - 1) 

[(21 + 4)(21 + 3)(21 + 2)]-'[3(a + 3)(a + 2)(b + 3)(b + 2)(e + 3)(e + 2)(e + 1)lg]' 
[(21 + 3)(21 + 2)(2I)]-'[(a + 2)(b + 2)d(e + 2)(e + 1)]'[(a + 1)(b + 1) + 2(A + I' + 1 + Ig)] 
[(21 + 2)(2I)(21 - 1)]-l[d(d - 1)(e + 1)(f + l)(g + 1)]i[2(a + 2)(b + 1) + g(f + 2)] 
[(21)(21 - 1)(21 - 2)]-1[3(a + 1)(b + l)d(d - 1)(d - 2)(1 + 2)(f + 1)(g + 2)(g + 1)]. 

(- )[(21 + 3)(21 + 2)]-l[(a + 2)(b + 3)(b + 2)(e + 2)(e + l)g]'[a - 21 + 1] 
[(21 + 2)(2I)]-l[2(b + 2)d(e + 1)(f + 1)]i[(a + 2)(b + 1) + g(f - a)] 
[21(21 - 1)]-l[(a + l)d(d - 1)(f + 2)(f + 1)(g + 1)]l[2b - g + 2] 

(- )[21 + 2]-l[(b + 3)(b + 2)(e + 1)(f + l)g]'[2a - 1+ 2] 
[21]-'[(a + l)(b + 2)d(f + 2)(f + 1)]l[b - 2g + 1] 

(- )[3(a + 1)(b + 3)(b + 2)(f + 2)(f + l)g]' 

N(AI'; A + 2, I' - 1) = [(A + 2)(A + 1)(1' + 1)(A + /10 + 4)(A + I' + 2)(A + /10 + 1)]-' 

TABLE VII. Isoscalar factors for (A,!,) ® (3, 0) --> (A + 1, I' - 2). 

(A,!,) --> (A + 1, I' - 2) 

[(21 + 4)(21 + 3)(21 + 2)]-l[3(a + 2)(b + 2)(e + 3)(e + 2)(e + 1)f(f - l)g(g - 1)]' 
[(21 + 3)(2I)(21 + 2)]-I[d(e + 2)(e + 1)lg]I[3(a + b + 1) + 2ab + Ig] 
[(21 + 2)(21)(21 - 1)]-l[(a + l)(b + l)d(d - l)(e + l)]l[ab + 2(A + I' + Ig)] 
[21(21 - 1)(21 - 2)]-l[3(a + l)a(b + l)bd(d - l)(d - 2)(f + 1)(g + 1)]' 

[(21 + 3)(21 + 2)]-1[(b + 2)(e + 2)(e + 1)lg(g - 1)]l[1 - 2a - 3] 
(- )[(21 + 2)(21)]-l[2(a + l)d(e + l)g]l[2a + ab + I(g - b - 1)] 
[21(21 - 1)]-l[(a + l)a(b + l)d(d - 1)(f + 1)]I[b - 2g] 

[21 + 2]-l[(a + 1)(b + 2)(e + l)g(g - l)]I[a - 2f] 
(- )[2I]-'[(a + l)ad(f + l)g]' [2b - g + 3] 

[3(a + l)a(b + 2)(f + l)g(g - 1)]. 

TABLE VIII. Isoscalar factors for (A,!,) ® (3, 0) --> (A, I' - 3). 

(A,!,) --> (A, I' - 3) 

[(21 + 4)(21 + 3)(21 + 2)]-I[(e + 3)(e + 2)(e + 1)/(f - 1)(f - 2)g(g - 1)(g - 2)]' 
[(21 + 3)(21 + 2)(2I)]-'[3(a + 1)(b + l)d(e + 2)(e + 1)/(f - l)g(g - 1)]' 
[(21 + 2)(2I)(21 - 1)]-'[3(a + l)a(b + l)bd(d - l)(e + l)lg]' 
[21(21 - 1)(21 - 2)]-1[(a + l)a(a - 1)(b + 1)b(b - 1)d(d - 1)(d - 2)]' 

(- )[(21 + 3)(21 + 2)]-1[3(a + 1)(e + 2)(e + 1)/(f - 1)g(g - 1)(g - 2)]' 
(- )[21(1 + 1)]-1[3(a + 1)a(b + l)d(e + 1)lg(g - 1)]' 
(- )[21(21 - 1)]-'[3(a + 1)a(a - 1)(b + 1)bd(d - 1)g]' 

[21 + 2]-1[3(a + 1)a(e + 1)/g(g - 1)(g - 2)]' 
[2I]-1[3(a + 1)a(a - l)(b + 1)dg(g - 1)]' 

(- )[(a + l)a(a - l)g(g - l)(g - 2)]i 
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TABLE IX. Isoscalar factors for (A, p.) (8) (3, 0) -> (A + 1, p. + 1). 

(A, p.) -> (A + 1, p. + 1) 

(- )[(21 + 4)(21 + 3)(21 + 2)]-1[3(a + 4)(a + 3)(a + 2)(b + 3)(b + 2)(d + I)(e + 2)(e + I)fJ' 
[(21 + 3)(21 + 2)(21)]-'[(a + 3)(a + 2)(b + 2)(e + I)(g + I)]l[(b + 3)e - 2dfJ 
[(21 + 2)(21)(21 - I)]-l[(a + 2)d(f + I)(g + 2)(g + I)]1[2(b + 2)e - (d - 1)/] 
[21(21 - 1)(21 - 2)]-1[3(b + I)d(d - I)e(f + 2)(f + I)(g + 3)(g + 2)(g + I)]l 

[(21 + 3)(21 + 2)]-l[(a + 3)(a + 2)(b + 3)(b + 2)(d + I)(e + 1)]I[e - 2fJ 
[(21 + 2)(21)]-l[2(a + 2)(b + 2)(f + I)(g + 1)]I[e(b + d + 3) - Id] 
[21(21 - I)]-l[de(f + 2)(f + I)(g + 2)(g + I)]l[2b + d + 3] 

[21 + 2]-l[(a + 2)(b + 3)(b + 2)(d + I)(f + I)]1[2e - fJ 
[2I]-l[(b + 2)e(f + 2)(f + I)(g + I)]l[b + 2d + 3] 

[3(b + 3)(b + 2)(d + I)e(f + 2)(f + 1)]' 

N(AP.; A + 1, p. + 1) = [(A + 3)(A + I)A(p. + I)(A + p. + 3)(A + p. + 2)]-1 

TABLE X. Isoscalar factors for (A, p.) (8) (3, 0) -> (A, p.). 

(A, p.) -> (A, p.) 

(- )[(21 + 4)(21 + 3)(2/ + 2)]-![6(a + 3)(a + 2)(b + 2)(d + I)(e + 2)(e + I)f(f - I)g]l 
(- )[(21 + 3)(21 + 2)(21)]-1[2(a + 2)(e + I)fJl[(a + 3)(b + I)d + dig - (b + 2)ge] 
[(21 + 2)(21)(21 - 1)]-1[2(b + I)d(g + I)]I[(a + 2)(A + be - df) + e(f + I)g] 
[(21)(21 - 1)(21 - 2)]-1[6(a + I)(b + I)bd(d - I)e(f + I)(g + 2)(g + 1)]' 

[(21 + 3)(21 + 2)]-'[2(a + 2)(b + 2)(d + I)(e + I)lgJl[a + e - I + 3] 
(- )[(2/ + 2)(21)]-![elg(2d + g - b - 3) - 2adlg + (a + 2)d/(A + p. + 1) + e(g - d) 

X (A + p. + 1)(21 + 2)] 
-1 [21(21 - I)]-![2(a + I)(b + I)de(f + I)(g + I)]![b + d - g] 
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(- )[21 + 2]-1[2(b + 2)(d + I)gJl[(a + I)(e - I) - (e + 1)/] 
(- )[2I]-![2(a + I)e(f + I)]![(b + 2)(g - d) + d(g + 1)] 

(- )[6(a + I)(b + 2)(d + I)e(f + I)gJ! 

N(AP.; AP.) = [(A + 2)A(P. + 2)P.(A + p. + 3)(A + p. + 1 )]-1 

TABLE XI. Isoscalar factors for (X, p.) (8) (3, 0) -> (X - 1, p. - 1). 

(X, p.) -> (X - 1, p. - 1) 

(- )[(21 + 4)(21 + 3)(2/ + 2)]-![3(a + 2)(d + 1)(e + 2)(e + 1)/(f - I)(f - 2)g(g - 1)]t 
(- )[(21 + 3)(21 + 2)(21)]-![(b + 1)(e + 1)/(f - 1)gJl[2(a + 2)d - e(g - 1)] 
(- )[(21 + 2)(21)(21 - I)]-I[(a + 1)(b + I)bdl]![(a + 2)(d - 1) - 2eg] 
[21(21 - 1)(21 - 2)]-![3(a + 1)a(b + 1)b(b - 1)d(d - I)e(g + 1)]! 

[(21 + 3)(21 + 2)]-I[(d + I)(e + 1)1(f - 1)g(g - 1)Jl[2a + e + 4] 
[(21 + 2)(21)]-1[2(a + 1)(b + 1)fg]l[d(a + e + 2) - e(g - 1)] 
[21(2/ - 1)]-I[(a + 1)a(b + 1)bde]![d - 2g - 1] 

(- )[21 + 2]-I[(a + I)(d + I)lg(g - 1)J![a + 2e + 2] 
(- )[2I]-I[(a + I)a(b + I)eg]I[2d - g + 1] 

[3(a + I)a(d + I)eg(g - 1)]1 

N(Xp.; A-I, p. - 1) = [(X + I)(p. + 2)(p. + I)(p. - l)(X + p. + 2)(X + p. + 1)]-1 
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CLEBSCH-GORDAN COEFFICIENTS 

TABLE XII. Isoscalar factors for (x, 1') @ (3, 0) ~ (X - 1, I' + 2). 

(X, 1') ~ (X - 1, I' + 2) 

[(2I + 4)(2I + 3)(2I + 2)]-'[3(a + 4)(a + 3)(a + 2)(b + 2)(d + 2)(d + I)(e + I)f(f - I)]! 
(- )[(2I + 3)(2I + 2)(2I)]-![(a + 3)(a + 2)(d + I)f(g + I)]![2(b + 2)e - d(f - 1)] 
[(2I + 2)(2I)(2I - O]-![(a + 2)(b + I)e(g + 2)(g + I)]![(b + 2)(e - 1) - 2df) 
[2I(2I - I)(2I - 2)]-![3(b + I)bde(e - I)(f + I)(g + 3)(g + 2)(g + 1)]1 

[(2I + 3)(2I + 2)]-![(a + 3)(a + 2)(b + 2)(d + 2)(d + I)f]![f - 2e - 1] 
[(2I + 2)(2I)]-![2(a + 2)e(d + l)(g + I)]![(b + 2)(e - f - 1) - df) 
[2I(2J - I)]-![(b + I)e(e - I)(f + I)(g + 2)(g + I)]![b + 2d + 2] 

(- )[2I + 2]-![(a + 2)(b + 2)(d + 2)(d + I)e]![2f - e + 1] 
[2I]-![(d + I)e(e - I)(f + I)(g + I)]![2b + d + 4] 

[3(b + 2)(d + 2)(d + I)e(e - I)(f + I)]! 

N(">'J.Li X-I, I' + 2) = [(X + 2)(X + I)(X - 1)(1' + 2)(1' + I)(X + I' + 2)]-! 

TABLE XIII. Isoscalar factors for (X, 1') @ (3, 0) ~ (X - 2, I' + 1). 

(X, 1') ---> (X - 2, I' + 1) 

[(2J + 4)(2J + 3)(2J + 2)]-1[3(a + 3)(a + 2)(d + 2)(d + I)(e + I)f(f - 1)(1 - 2)g)l 
[(2I + 3)(2J + 2)(2J)]-![(a + 2)(b + I)(d + I)f(l - 1))I[(a + 3)d - 2eg] 
(- )[(2I + 2)(2I)(2J - I)]-![(b + I)bef(g + I)]![2(a + 2)d - (e - I)g] 
[2I(2I - I)(2J - 2)]-![3(a + 1)(b + I)b(b - I)de(e - I)(g + 2)(g + 1)]1 

(- )[(2I + 3)(2I + 2)]-![(a + 2)(d + 2)(d + I)f(f - I)g]![a + 2e + 3] 
(- )[(2I + 2)(2J)]-![2(b + I)(d + I)ef]l[(a + 2)d - g(a + e + 1)] 
(- )[2J(2I - I)]-![(a + I)(b + I)be(e - I)(g + I»)I[g - 2d] 

[(2I + 2)]-I[(d + 2)(d + I)efg]![2a + e + 3] 
(- )[2I]-![(a + I)(b + 1)(d + I)e(e - I)]![2g - d] 

(- )[3(a + I)(d + 2)(d + I)e(e - I)g]' 

N(XJ.Li X - 2, I' + 1) = [(X + I)X(J.L + 3)(1' + IMX + I' + 2)]-1 

TABLE XIV. Isoscalar factors for (X, 1') @ (3, 0) ~ (X - 3, I' + 3). 

(X, 1') ~ (X - 3, I' + 3) 

(- )[(2I + 4)(2J + 3)(2I + 2)]-![(a + 4)(a + 3)(a + 2)(d + 3)(d + 2)(d + I)f(f - 1)(1 - 2)]1 
[(2I + 3)(2I + 2)(2I)]-![3(a + 3)(a + 2)(b + I)(d + 2)(d + I)ef(l - I)(g + 1»)1 
(- )[(2I + 2)(2I)(2I - I)]-![3(a + 2)(b + I)b(d + I)e(e - I)f(g + 2)(g + 1»)1 
[2I(2I - I)(2I -2)]-![(b + I)b(b - I)e(e - I)(e - 2)(g + 3)(g + 2)(g + 1)]1 

[(2I + 3)(2I + 2)]-![3(a + 3)(a + 2)(d + 3)(d + 2)ef(f - 1)]1 
(- )[(2I + 2)(2I)]-![6(a + 2)(b + I)(d + 2)(d + l)e(e - I)f(g + I)]! 
[2I(2J - I)]-![3(b + I)b(d + 1)(g + 2)(g + l)e(e - I)(e - 2)]1 

(- )[2J + 2]-![3(a + 2)(d + 3)(d + 2)(d + I)e(e - I)f)1 
[2I]-![3(b + I)(d + 2)(d + I)e(e - I)(e - 2)(g + 1)]1 

[Cd + 3)(d + 2)(d + l)e(e - I)(e - 2)]1 

N(XJ.Lj X - 3, I' + 3) = [(X + I)X(X - 1)(1' + 3)(1' + 2)(1' + 1)]-1 
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We consider linear system of finite dimensionality in which the system matrix is a well-behaved 
function of the independent variable-z or t. The system is assumed to obey a conservation law with 
zero signature, but is otherwise unrestricted. Using what we call the "vectorial derivative," it is 
shown that we can obtain Lagrangian and Hamiltonian functions in terms of which the system 
behavior is described in the usual way. Thus, the methods of classical physics are made available 
for the study of such systems, without the physical connotations usually carried by such functions. 

In carrying out this formalization, we define a functional--e.g., the Hamiltonian-a.nd, at the same 
time, define the operator that generates the function. It is shown that the interrelation of two fune­
tionals involves the appropriate commutator of the operators involved. For example, the Poisson 
bracket of a functional, F, and the Hamiltonian, H, is the functional obtained from the operator 
r[rH, rF], where 

and F and H are the operators involved in F and H. The analogy to quantum mechanics is striking. 
Finally, it is shown that the contact transformations that preserve the Hamiltonian operator form 

a rotational system in the Lie algebra, L, in which rH is embedded. That is, they obey equations 
of the form:M = [rH, M]. It follows, then, that all H-preserving transformations can be split into 
components in the intersection of the r-unitary group and either L or a subspace derived from L. 

I T is our purpose, here, to apply the methods of 
classical mechanics1

•
2 to the analysis of linear 

systems describable by a vector differential equation 
of the form 

(1) !nay be quite intractable, even when the dimen­
sionality is s!nall, and the functional dependence of 
S on t apparently simple. Indeed, there are only a 
few cases where a solution in closed form is knOWD. 

dx/dt = Sx, 
(1) As illustration, we !nay observe that the conditions 

stated permit us to represent in the form of Eq. (1) 
any scalar linear differential equation of order 2n in 
any range excluding the singularities of its coef­
ficlents. It is of interest, therefore, that the methods 
of classical physics can be applied in this formal 
context where the concepts of energy and action 
may have little meaning. 

where x is a 2n-dimensional vector represented as a 
column vector.8 S is, then, a 2n X 2n !natrix whose 
coefficients !nay be functions of t. We shall at the 
start, assume only that the coefficients of x and S are 
bounded complex functions of t that obey the Lip­
schitz condition in the range of interest. We call 
Set) the system matrix. We can, of course, use z in 
place of t as the independent variable, and consider 
Eq. (1) as the basic equation of coupled-mode theory. 

Such systems are of tremendous importance in 
physics and engineering. When S is constant, its 
solution is, in principle, straightforward and directly 
calculable. When S is not constant, however, Eq. 

1 J. L. Synge, "Classical Dynamics," in Handbuch der 
Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1960), 
Vol. III/I. 

2 A. Mercier, Analytical and Canonical Formalism in 
Physics (North-Holland Publishing Company, Amsterdam, 
1959). 

aWe shall indicate vectors, when expressed as column 
matrices, by lower-case boldfaced t~e. Matrices will be 
indicated by boldfaced capitals. We will use a dagger (t) to 
indicate the Hermitian conjugate, or complex-conjugate 
transpose. The asterisk (*) will indicate the complex con­
jugate of a scalar. 

The analysis given here may also be helpful in 
illuminating the connection between classical and 
quantum physics. We find, for example, that the 
Poisson bracket of an arbitrary functional and the 
Hamiltonian goes over fairly auto!natically into a 
kind of commutator of the associated operators. It 
therefore appears that this interrelation is a formal 
one that is implied by the mathematical structure. 
The interpretation of this interrelation in terms of 
possible measurements is, of course, another !natter 
entirely. 

Finally, when we investigate the contact trans­
fOrInations that preserve the Hamiltonian operator, 
and so describe essential symmetries of the system, 
we shall find that they have some rather remarkable 
properties. Usually, these symmetries are studied 
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through the infinitesimal contact transformations, 
which identify the Lie algebra4 involved, and so at 
least partially identify the group. Quite surprisingly, 
we find it unnecessary to do this. We can consider 
an arbitrary linear transformation, without restric­
tion to infinitesimal ones, and find that it is con­
fined to the minimum covering Lie algebra of rH, 
where r is a constant operator, and H the Hamil­
tonian operator. The operator rH is, at worst, 
in the Lie algebra of r-skew-Hermitian operators. 
Contact transformations in general are in the Lie 
group of r-unitary operators. Hence, we obtain the 
rather remarkable result that the contact trans­
formations preserving H are, at most, curves in both 
the algebra and the group. 

In developing this analysis, we initially assume 
nothing more than has been stated. We shall shortly, 
however, assume the existence of what we call the 
formal Lagrangian of a particular form. We find that 
this implies the existence of a conservation law of the 
system. In particular we find that there exists a K 
that is Hermitian and of zero signature such that, 
if x(t) is a solution of Eq. (1), then the scalar 

(2) 

is independent of t, and so describes a quantity that 
is conserved by the system. 

The restriction of the system to one with a con­
servation law does not appear to be serious. Most 
systems of interest, at least in the idealized form that 
is generally the subject of analysis, do have a con­
servation law. As examples, we may cite systems 
conserving energy, number of quanta, reduced en­
ergy in the sense of either the linearized Manley-

4 An algebra is, briefly, a linear vector space that is also 
a ring. As a linear vector space, it is closed under scalar 
multiplication and addition. As a ring, there is also defined a 
product relation between any two elements that is linear in 
both elements, and gives an element of the ring, i.e., the 
ring is closed under the defined product. Division need not be 
possible in a ring, nor must the ring contain a unit element. 
Algebras are either associative or not, depending on whether 
the product relation is. A Lie algebra is a nonassociative 
algebra using a Lie product. A Lie product is one which is 
skew-symmetric, so that [A, B] = -[B, A], and obeys the 
Jacobi identity: [[A, B], C) + [[B, C], A] + r[C, A], B) = o. 
The Lie product that interests us, here, is the commutator 
of two matrices: 

[A, B] = AB - BA 

The set of all K-skew-Hermitian matrices, as defined in 
Eq. (13), can be easily shown to be a Lie algebra over the 
field of real numbers. It is both a linear vector space over the 
reals, and closed with respect to commutation. 

As an introduction to the concept of a Lie algebra and its 
relation to a continuous group, see M. Hamermesh, Group 
Theory (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1962). For a much deeper study, see N. 
Jacobson, Lie Algebras (Interscience Publishers, a Division of 
John Wiley & Sons, Inc., New York, 1962). 

Rowe equations5 or Chu's kinetic power law, 6 and 
the like.7 

The restriction to conservation laws with zero 
signature is more serious. However, it does appear 
that the linearized approximations to most systems 
of physical interest do involve such laws. In coupled­
mode problems, for example, where z replaces t, we 
find that the modes do occur in pairs with opposite 
parities. While this is a restriction we would prefer 
to avoid, it does not appear to limit unduly the 
practical application of these methods. 

VECTORIAL DERIVATIVE 

As a preliminary to our analysis, we define what 
we call the vectorial derivative with respect to a vector. 

We are concerned, in general, with functionals that 
are quadratic forms: 

A = xtAx = 1: x~A'jxj. 
ij 

(3) 

If we consider x. and x~ to be independent variables, 
A is a function of the 2n variables, Xi and x~, 1 ::; 
i ::; n. Hence, we can obtain 

aA 
aXj 

aA 
axt 

1: X~Aij = (xtA);, 
• 
1: Aijxj = (Ax) •. 

j 

This suggests that we construct vectors of these 
derivatives by defining the vectorial derivatives of 
Eq. (3) as 

t aA/ax = x A, aA/ax
t 

= Ax. (4) 

It is these operators that we call the vectorial deriva­
tive. It is not difficult to verify that, acting on a 
suitable operand, they obey the usual rules of dif­
ferentiation.8 

Of more immediate interest, we can show the 
validity of the Euler-Lagrange equations by an 
adaptation of the usual development. In particular, 
let oC(u, ut , ti, tit, t) be a functional of the indicated 
variables where the dot indicates the derivative with 
respect to time. We now require that u, ut , ti, tit be 
functions of t, so that they describe a trajectory 
through phase space, such that the integral L = 

6 J. M. Manley and H. E. Rowe, Proc. IRE 44,904 (1956). 
6 H. A. Haus, MIT Rept. No. 316 (April 1958). 
7 M. C. Pease, J. Appl. Phys., 31, 1988, 2028 (1960). 
8 The vectorial derivative operators are written in the 

same form as ordinary partial derivatives, except for the 
boldface symbol indicating that the differentiation is with 
respect to a vector. The distinction is important, however. 
Unrestrained use of the formalism can lead to trouble. In 
particular, it is necessary to pay careful attention to the 
order of factors in an equation Involving the vectorial deriv­
ative of a scalar function. 
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s::£ dt shall be stationary for any variation that 
preserves the endpoints. The condition for this can 
readily be found to be the Euler-Lagrange equations 

iJ£ d (0£) o£ d (0£) 
oU = dt ou out = dt aut . (5) 

It is with these equations that we shall seek to de­
scribe the system. 

The Lagrangian Function 

We are now prepared to seek a functional £ such 
that any stationary trajectory it defines will be a 
solution of Eq. (1). 

The Euler-Lagrange equations, Eq. (5), are second 
order, while Eq. (1) is first order. We can always 
trade order for dimensionality, however. Suppose, 
then, we partition x and S, in Eq. (1), into 

x = [Uvl S = [Sn SI2]. (6) 
S21 S22 

We specify that this partition must be symmetric, 
so that U and v are n-dimensional vectors, and the 
submatrices of S are n X n square. This does not 
appear to be entirely necessary, but there seems 
little reason to study the more general case. 

Equation (1) is thus split into two equations: 

u = Suu + Sl2V, 

'0" = S21U + S22V. 

We solve Eq. (7) for v: 

(7) 

(8) 

v = S~~(u - Snu). (9) 

This assumes that the partition of Eq. (6) has been 
made in such a way that S12 is nonsingular. 

For the sake of flexibility, we introduce a constant 
nonsingular matrix, P, into Eq. (8) and write it as 

(tPv)" = '/,PS21U + '/,PS22V. (10) 

We may now identify the left side of Eq. (10) as 
(d/dt) (o£/out) , and the right as (o£/out) in Eq. 
(5). We can, then, write 

£ = iutPv + iut (PS21U + PS22v) 

= ut('/,PS~~)u + ut(-'/,PS~~Sll)u 

+ Ut(tPS22S~~)U+Ut('/,PS21 - '/,PS22S~~Sn)U (11) 

using Eq. (9). 
The £ of Eq. (11) will, now regenerate Eq. (1) 

if we use the second form of Eq. (4). However, we 
also require that the first form of Eq. (4) shall gen­
erate Eq. (1). The simplest way to do this is to re-

quire that £ be Hermitian. If we impose this con­
dition on Eq. (11), we find that we must have 

S:2P = 
t 

-P S12' 

S!IP
t 

= -PS21 , (12) 

S:IP = -PS22 • 

We can combine these constraints by saying that 
S must be K-skew-Hermitian, as defined by 

(13) 

for the nonsingular, constant, Hermitian matrix K 
given by 

K=lro PJ. 
pt 0 

(14) 

That S should be K-skew-Hermitian is the necessary 
and sufficient condition for the conservation of the 
functional given in Eq. (2). The K of Eq. (14) is 
distinguished by the fact that it has zero signature, 
as is most easily seen by noting that the traces of all 
odd powers of K are zero. 

It will be noted that there was a good deal of 
arbitrariness in the development of the £ of Eq. (11), 
The partition of x and S is arbitrary as long as S12 
is nonsingular. The division of Eq. (8) given in Eq. 
(10) is largely arbitrary. We could also have used a 
P that is not constant. The factor i in Eq. (10) was 
introduced so as to obtain a K in Eq. (14) that is 
Hermitian, but there are other ways of doing this. 
Finally, the requirement that £ be Hermitian is 
stronger than we need. All that we require is that 
the two forms of Eq. (4) shall both lead to Eq. (1). 

The £ of Eq. (11) is, thus, to be regarded as a con­
venient Lagrangian, but not as one having any other 
reason for preference. The particular K of Eq. (14) 
is incidental to these arbitrary choices, which involve 
the choice of basis for the system. That a conserva­
tion law of the form of Eq. (2) exists at all, and that 
it has zero signature, are more fundamental require­
ments, and are probably independent of the partic­
ular way the arbitrary choices are made. 

In what follows, then, we shall use the Lagrangian 
of Eq. (11). 

THE HAMILTONIAN AND THE CANONICAL 
EQUATIONS 

The next step is to form the Hamiltonian. For 
this, we define in a formal manner the appropriate 
conjugate momentum vector p: 

p = o£/ou
t = '/,PS~~u - '/,PS~~Sl1U, (15) 
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and similarly for pt. If we solve this for u and sub­
stitute into Eq. (11), we find that 

dF _ aF + . t aF + aF . + . t aF + aF . 
dt - at u aut au u p apt ap p. (25) 

. ts p-1 +. tps £ = -zp 12 P 'tU ~1U, 

using Eq. (12). 

(16) Using Eqs. (20) and (21), we are lead to define the 
Poisson bracket of two functionals, F and G, as 

We define the Hamiltonian as 

H t. + .t n = pu up - <iv, (17) 

when expressed as a function of u, ut, p, pt, and t. 
We find, then, that 

H = (u tp t)H(;) , (18) 

where 

(19) 

The canonical equations that we expect H to satisfy 
are 

u = aH/ap\ ut = aH/ap, (20) 

p = -aH/aut, pt = -aH/au. (21) 

We find that Eq. (20) reformulates Eq. (15) for 
p. If we develop Eq. (21) and use Eqs. (15) and (9), 
we obtain Eq. (10), the Euler-Lagrange equation. 
Hence, Eqs. (20) and (21) do describe the system. 

It is convenient to write the canonical equations 
in the form 

:t [u] = r[a/au:]H(U, p), (22) 
P a/ap 

where r is defined, as in Synge,1 by 

r = [~I ~} (23) 

If we substitute Eq. (18) in Eq. (22) and observe 
that 

[
a/aut](utpt) = I, 
a/apt 

then Eq. (22) can be written simply as 

(24) 

Given the functional Hamiltonian H, or the matrix­
valued function H, then Eq. (22) or (24) describes 
the system. 

POISSON BRACKET 

We consider, now, an arbitrary functional F(u, 
ut, p, pt, t). Its total derivative with time is 

{F, G} 

= aF aGt _ aF aGt + aG aFt _ aG aFt (26) 
au ap ap au ap au au ap , 

so that Eq. (25) becomes 

dF/dt = aF/at + {F, H}. (27) 

If F does not depend explicitly on t, then a necessary 
and sufficient condition for it to be a dynamical 
invariant of the system is that its Poisson bracket 
with H shall vanish. 

If, now, F is a quadratic form, 

F = (Utpt)F[U] = (utpt) [Fll F12] [u] , 
P F21 F22 P 

then we can find by straightforward calculation that 

{F, H} = (utpt) {FrH - HrF} [:]. (28) 

The term in brackets is a kind of a commutation of 
the operators F and H. We can make it explicitly a 
commutator by noting that r2 = - I, so that Eq. 
(28) can be written as 

t t ru] {F, H} = (u p )r[rH, rF] ~ . (29) 

Thus, we find the commutator of operators emerging 
as the equivalent of the formation of the Poisson 
bracket of the functionals. From Eq. (27) we find 
also that the total derivative of a functional involves 
the commutation ofthe appropriate operator and rHo 

CONTACT TRANSFORMATIONS 

In seeking transformations that will preserve the 
form of the canonical equations, we follow the usual 
procedure of defining a contact transformation in 
terms of a generating functional T(u, ut, q, qt, t), 
where q and qt are to be the new momentum vectors. 
We require that T be such that 

/ 
t t P = aT au , p = aT / au, (30) 

and define the position vectors by 

/ 
t t 

W = aT aq , w = aT / aq. (31) 

Again we will confine our attention to functionals 
that are Hermitian quadratic forms, and write 

T = utUu + qtVq + utXq + qtxtu, (32) 
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where U and V are Hermitian and X is nonsingular. 
We find that 

p = Uu + Xq, 

w = Vq + Xtu. 

From these equations we obtain 

where 

(33) 

(35) 

(36) 

We observe, first, that M and Mt are r-unitary,9 
i.e., 

MtrM = r, 

MrMt = r, 
(37) 

as may be verified directly. The second equation can 
be obtained from the first by taking its inverse and 
noting that r-1 = - r. 

Now, substituting Eq. (34) in Eq. (24), we obtain 

~t [:1 ~ -M-'M [:J + M-'nIM[:J 
-M-1M[:J + (M-IrMt-I)(MtHM) [:J 

= r{rM-1M + MtHM}[:l ' (38) 

where we have used Eq. (37) and the fact that 
r 2 = -I. 

Hence, if we define 

() = rM-'M + MtHM, (39) 

Eq. (38) will have the same form as Eq. (24), i.e., 
will be canonical. The () of Eq. (39) is the trans­
formed Hamiltonian operator. 

To put Eq. (39) in more familiar form, we can 
observe, first, that the transformation of H to MtHM 
is the transformation that changesH(u, p) to H(w, q) 
-i.e., a change of basis. We can also verify by direct 
(if tedious) calculation, that 

g The set of K-unitary matrices, i.e., matrices for which 
MtKM = K, form a group providing K is nonsingular. 

= [X-1 OJ [~ ~] [Xt

-

1 -X It-IV J. (40) 
_VX-1 I xt V ° 

The central matrix is aT/at, where T is the operator 
of the generating functional, Eq. (32). The matrices 
on each side are those appropriate to changing the 
basis of T from (u, q) to (w, q). Hence Eq. (39) be­
comes, in functional form, 

.p = aT/at + H(w, q). (41) 

Thus, the Hamiltonian function transforms in the 
usual way under a contact transformation of the 
form given. 

INVARIANT TRANSFORMATIONS 

Of particular interest are the contact transfor­
mations that leave the Hamiltonian operator un­
changed. These transformations tell us the symmetry 
properties of the system. 

This problem is usually attacked by considering 
the infinitesimal transformations, i.e., those such 
that M is near the identity. However, rather sur­
prisingly, this turns out not to be necessary in the 
present type of problem. We suspect that this con­
clusion is a consequence of the linearity of Eq. (1). 

We consider Eq. (39) and require that () = H. 
Recalling that r 2 = -I and using Eq. (37), we 
find that we require that 

M = rHM - MrH = [rH, M]. (42) 

This is a rather strange equation to find in this con­
text. It implies that M(t) is involved with a Lie 
algebra,4 rather than the group. 

Consider rH, as computed from Eq. (19). Using 
Eq. (12), we find that it is r-skew-Hermitian, i.e., 
that 

r(rH) + (rH/r = o. (43) 

The linear envelope of all such matrices is the Lie 
algebra of the infinitesimal transformations of the 
Lie group of r-unitary matrices, defined by Eq. (37). 
We shall call this algebra L. rH is, then, a curve in 
L. 

If M(O) is in L, then it is easy to see that Eq. (42) 
implies that M(t) remains in L for all t. M(t) is, then, 
a curve that is in the intersection of the algebra and 
the group. [We have already seen, in Eq. (37), that 
M is in the group.] 

If M (0) is not in L, then we have shown elsewhere10 

10 M. C. Pease, J. Math. Phys. 6, 111 (1965). 
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that we can split M(O) into two components, one 
of which is in L and the other is orthogonal to all 
of L under the Killing form. The first component 
generates a curve in L, independent of the second 
component. And the second generates a curve in a 
linear subspace that is orthogonal to all of L, and 
independent of the first component. Thus M (t) is 
split into two noninteracting curves. 

It may also happen that rH is a curve in a proper 
subalgebra of L, say L 1• We can then split M further. 
In the first place L1 may not be simple. If it is not, 
we can split it into simple subalgebras, and split 
M (t) accordingly. We can then split M (t) into nonin­
teracting curves in each of these subalgebras. 

Thus it is possible to discuss in considerable detail 
the possible behavior of the transformations leaving 
H invariant, knowing only the structure of the Lie 
algebra in which rH is embedded. 

CONCLUSIONS 

We have been able, here, to remove all physical 
connotations from the notions of the Lagrangian, 
the Hamiltonian, etc., when applied to linear sys­
tems, and so have broadened the range of their 
possible application and value. In so doing, we have 
made these methods available for the study of non­
uniform or time dependent systems, which are gen­
erally intractable to the more direct forms of anal­
ysis. Presumably, we can now apply to such systems 
the entire body of technique that has been developed 
for classical mechanics. 

Of immediate consequence, we have obtained 
means for investigating directly the existence of 
conservation laws of the system, or of specifying 
systems that exhibit specified conservation laws. 
Our analysis depends on the existence of one such 

law, given by Eq. (2) or (14). But it is of evident 
utility to investigate if the system obeys others as 
well. If so, these other laws will be found as con­
stant solutions of Eq. (42), or as r-unitary matrices 
that commute with all of L, or L 1, the minimum 
covering Lie algebra of rHo They are, in other words, 
Casimir operators of L 1, or of the subgroup of the 
r-unitary group that generates L1 as the corres­
ponding algebra. ll 

As a byproduct, we have seen the emergence of 
the commutator as the significant type of relation 
between operators. In the context of this investiga­
tion, it has been natural for us to consider, more or 
less simultaneously, the quadratic forms that we 
used to define functionals and the operators gen­
erating these forms. We have found that, where we 
wish to consider the interrelation of two functionals, 
e.g., in the Poisson bracket, the corresponding inter­
relation of the operators is by some appropriately 
modified commutator. 

As a second byproduct, we have discovered that 
the transformations that leave the Hamiltonian oper­
ator invariant obey Eq. (42). This is an interesting 
result in that it shows that these transformations 
may be resolved into curves in the Lie algebra in 
which rH is embedded, and the linear vector space 
orthogonal to it. In other words, we can infer many 
of the consequences of the symmetry of the system 
from knowledge of the structure of this algebra. 
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This paper is a group-theoretical study of the kinematics of n nonrelativistic particles. A systematic 
method is given to construct a new complete set of commuting observables. The method is based on 
the existence of a group (the "great group") which acts transitively on the phase-space manifold 
and preserves the phase-space volume element; the observables are then Casimir operators of the 
great group and of some of its subgroups, including the usual three-dimensional rotation group. 

Among these collective observables, in addition to the total angular momentum the most inter­
est~ng is the "~ogethernes~ op;rator" which describes the simultaneous localization ~f the n particles. 
This operator IS a generalizatIon to n > 2 of the square of orbital angular momentum' its use allows 
to generalize to n particles the familiar centrifugal barrier arguments. ' 

1. INTRODUCTION 

AFTER the essential work by Wigner,l the rel­
evance of the Poincare group and its representa­

tions for particle physics has been gradually rec­
ognized. However, there remains a great number of 
unsolved problems, mainly concerning the applica­
tion of this type of group-theoretical idea to the 
analysis of concrete physical situations. This is the 
case when one looks for a convenient description of 
several-particle states; a description which should 
clearly exhibit their essential kinematical properties. 
In our opinion this is not an academic type of prob­
lem. On the contrary we think such questions to 
be of great physical interest; the answers to them 
might give new and useful tools for the study of 
dynamical problems. This view has strong historical 
support: think of the phase-shift analysis and of 
the great importance this method has gained in 
scattering studies. As a matter of fact, this phase­
shift method at once results from a kinematical 
study of the nonrelativistic two-body problem 
(though this is not the historical point of view). It 
is significant that only recently has such a study 
been consistently achieved in the relativistic case,2.3 
which, of course, presents much more difficulty. 

A certain amount of work has been done con­
cerning the three-particle case.3

•
4 However, until 

very recently, the only methods available for three 
or more particles relied upon the usual trick of coupl-

*. t Postal address: Laboratoire de Physique TMorique et 
Hautes Energies, Batiment 211, Faculte des Sciences, Orsay 
(S.-et-O.), France. 

1 E. P. Wigner, Ann. Math. 40, 149 (1939). 
2 A. J. Macfarlane, J. Math. Phys. 4,490 (1963) and other 

references there; P. Moussa and R. Stora, Symposium on the 
Lorentz Group, Boulder, Colorado, (1964). 

a H. J008, Fortschr. Phys. 10, 65 (1962). 
• G. C. Wick, Ann. Phys. 18, 65 (1962). 

ing each particle, one after the other, to the cluster 
of all the preceding ones. The solutions thus obtained 
present great disadvantages in many cases, due to 
to the awkwardness and asymmetry of the coupling 
scheme. In particular when one was to treat all the 
three particles on the same footing (as far as pos­
sible!), considerable difficulties were met. A good 
example of this type of problem is afforded by the 
analysis of the Dalitz plot distributions arising from 
three identical particles. Usually this had been done 
by constructing "matrix elements" with the hypo­
thetical symmetries of the decaying particle.5 But 
in this approach, one is faced with a good deal of 
arbitrariness, and ambiguities arise. This has not 
been a great hindrance up to now, since one was 
only interested in some rather crude properties of 
the analyzed state (spin and parity, essentially). But, 
if we want to look for finer details (say, the degree 
of spatial correlation or localization), we obviously 
need more-refined methods. What is perhaps more 
important, the quantum numbers used up to now 
to characterize three-particle states were not always 
physically useful, in that they did not reflect the 
properties of the three-particle state as a whole, but 
only its properties as a two-plus-one-particle state. 
This hindered, for instance, the generalization in a 
simple way of the centrifugal-barrier argument. In 
another area, let us recall the difficulties encountered 
when trying to extend the concept of Regge tra­
jectory in the three-particle case. These might be 
due to a bad choice of the quantum numbers to be 
complexified. 

In our opinion, a decisive step towards a solution 
6 L. W. Alvarez, B. C. Maglic, A. H. Rosenfeld and 

M. L. S~e,:e~son, Phys. Rev. 125,687 (1962); B. Barselia and 
E. Fabn, tbzd. 126, 1561 (1962)' C. Zemach ibid 133 B1201 
(1964). " . , 
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of many of these questions has been taken by Dragt,6 
who fully exploited preceding ideas of Smith.7 Dragt 
tells us how to obtain a new basis for describing 
three-particle states. In his classification, the basis 
states are labeled, as usual, by the total energy­
momentum 4-vector, the total angular momentum, 
and one of its components. The novelty consists in 
the introduction as the additional quantum numbers, 
instead of the energy and angular momentum of 
any pair of particles for instance, of two discrete 
quantum numbers with the following properties: 

(a) they can be considered as labels of an ir­
reducible representation of the SUa group. 

(b) one of them at least is of fundamental phys­
ical significance in that it is related to the eigenvalues 
of the "togetherness operator." This is a dynamical 
variable introduced by Smith.7 In the classical case, 
this is a function of the three-particle trajectories 
which decreases as the corresponding world lines 
come closer to each other. In other words, low values 
for this quantum number mean a highly localized 
(at some time) three-particle state. 

We see at once all the benefit to be gained from 
such a concept. For instance, in many physical situa­
tions, one knows beforehand that the considered 
state is essentially localized within a small volume, 
so that only the lowest eigenvalues of the "together­
ness operator" will have to be considered; indeed 
Dragt has shown 6 that in the K ~ 371" decay, one 
practically deals with the first eigenvalue only. This 
is to be contrasted with the standard "two-plus-one­
particle" method used by Dalitz8 in his fundamental 
work on this decay. 

Further, Dragt's states are completely "demo­
cratic" with respect to the three particles, in that 
they belong to irreducible subspaces with respect to 
the permutation group on the three particles. In 
other words, they enjoy simple and explicit sym­
metry properties, which makes it very easy to en­
force upon them the Bose-Einstein or Fermi-Dirac 
statistics. 

It seems to us, however, that an elucidation of 
the meaning of Dragt's results may be useful, not 
only for a clarification of the three-particle case, 
but also for the generalization to more complicated 
situations (n > 3; relativistic case). Chacon and 
Moshinsky9 have given another derivation of Dragt's 

eA. J. Dragt, J. Math Phys. 6, 533 (1965). 
7 F. T. Smith, Phys. Rev. 120, 1058 (1960). 
8 Cf. for instance R. H. Dalitz, Repts. Progr. Phys. 20, 

163 (1957). 
g E. Chacon and M. Moshinsky, "The Three-Body Problem 

and the SU. Group" (University of Mexico preprint). 

results, which is somewhat clearer, but being based 
upon the Schrodinger equation, does not either allow 
for a relativistic generalization. 

The present work is devoted to a clarification of 
the situation, together with the formulation of a 
method valid for any number of particles. Here we 
stick to the nonrelativistic case. The problem of 
multiparticle states classification will be entirely 
formulated from a group-theoretical point of view. 
In the following section, we show how this problem 
reduces to the decomposition into irreducible com­
ponents of a tensor product of irreducible representa­
tions of the Galilei group. The purely translational 
properties of the n-particle states are easily dealt 
with, being of course related to the total energy­
momentum of the state. When the energy-mo­
mentum has a fixed value, the various possible con­
figurations of the n-particles 4-momenta generate 
what we will call the "phase space" of the system. 
We show the study of this phase space, equipped 
with the usual "volume element," to be of fun­
damental importance for classifying the "internal" 
(nontranslational) properties of the n-particle sys­
tem. In particular the angular momentum properties 
of the system are related to the rotation group SOa 
which acts in a natural way on phase space and keeps 
the measure invariant. But the nonrelativistic phase 
space has an obvious sphere structure and one can 
imbed the SOa group into a larger rotation group 
which may be called the "great group" acting now 
in a transitive way in phase space. We show how 
the n-particle states with fixed momentum-energy 
and angular momentum can be further classified 
with the help of quantum numbers corresponding 
to irreducible representations of the "great group" 
and of subgroups of it. This method is illustrated by 
a simple example in the Appendix. Furthermore, 
this great group can be defined in such a way (in 
fact, it is here the most natural one) that one of the 
quantum numbers thus introduced will always cor­
respond to the "togetherness operator" alluded to 
before.7 This means we introduce a new complete 
set of commuting observables for an n-particle 
system. This set comprises, in addition to usual ob­
servables such as the total angular momentum, new 
observables which describe collective properties of 
the system. Here is in fact the physical justification 
of the method. 

We indicate then that any group transitive on 
phase-space could do the job as a "great group." 
One could think of determining such a group by 
"democracy" arguments, trying to keep all the par­
ticles on the same footing. Indeed, this is what 
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Dragt doeso when he chooses to work with SUa 
instead of SOo (they are both transitive on the three­
particle phase space). Unfortunately, this is not 
always possible; as a matter of fact, in many cases 
there exists no other group transitive on a sphere 
than the corresponding orthogonal group. 

In a companion paper,10 it will be shown how the 
general method enables us to recover Dragt's results 
in the three-particle case. 

Finally, let us say that the method, as exposed 
here, can be in principle easily generalized to the 
relativistic case. However some new problems arise, 
of interpretation on the one hand, of computation 
on the other. We defer a treatment of these to a 
forthcoming publication. 

2. KINEMATICS AND PHASE-SPACE 

Quantum Kinematics and the Galilei Group 

Kinematical properties of nonrelativistic particles 
are described by the transformation law of their 
states· under the Galilei group. We call a particle 
"elementary" when its states span a representation 
space for an irreducible representation of the Galilei 
group. The solutions of the free-particle Schrodinger 
equation form such a vector space. Let 

g = (b, a, v, R) (1) 

be any element of the Galilei group, acting upon 
space-time coordinates (x, t) according to 

x' = Rx + vt + a, (2) 
t' = t + b. 

An irreducible unitary representation of the Galilei 
group is labeled by a positive number m (the mass) 
and an integer or half-integer 8 (the spin).ll It can 
be cast in the form 

[U(g)!Jt]a(P) = exp (ip·a - iEb) 

X L 5J:~(R)!Jt~[R-l(P - mv)] (3) 
~ 

where 

E = p2 j2m+ '0 ('0 = constant potential energy) 

and :0' (R) is the (28 + I)-dimensional representMion 
of the rotation group. This representation of the 
Galilei group we denote by [m I '0, 8]. 

The representation is unitary with the scalar 
product given by 

(I/>, !Jt) = ~ J Cf)a(P)!Jta(P) dp. (4) 

10 J. M. :Levy-Leblond and M. Levy-Naha.s, J. Math. 
Phys. 6, 1571 (1965) (following paper). 

11 J. M. Levy-Leblond, J. Math. Phys. 4, 776 (1963). 

A convenient but improper basis for these one-par­
ticle states is given by the "vectors" ip, a) with 

(Po, ao I p, a) = ~(a)(p - PO)~aa •. 

Consider now n-particle states. These obviously be­
long to the tensor product of the n one-particle­
state spaces. A basis for n-particle wavefunctions is 
a basis in this tensor product space. Of course, the 
physicist is interested in a choice which exhibits as 
clearly as possible the kinematical properties of these 
n-particle states, i.e., their total mass, momentum, 
angular momentum, etc. That is to say, we want 
basis states belonging to Hilbert spaces irreducible 
with respect to the Galilei group representation. 
We have thus to decompose the "total" Hilbert space 
into a direct sum of Hilbert spaces, each of them 
carrying an irreducible representation of the Galilei 
group. Or, in other words, we must decompose 
the tensor product of the n individual Galilei group 
representations into a sum of irreducible ones. 

N-Particle Systems 

Let us state this problem explicitly. Consider for 
simplicity n particles without spin and with the 
same mass m. The Galilei group representation to 
be considered acts in the Hilbert space of functions 
!Jt(PI, P2, '" , Pn) with the scalar product: 

(I/>, !Jt) = J Cf)(PI' .. , ,P.,)!Jt(Pl, ... ,P .. ) dpi ... dp .. 

(5) 

according to 

[U(g)!Jt](P1 , ... ,p.,) 

= exp ria. (PI + .. , + Pn) - ib(EI + ... + En)] 

X !Jt[R-I(pI-mv), R-I(P2-mv), ... ,R-I(pn- mv)]. 

We now introduce the following new variables: 

P = PI + P2 + .,. + pn, 

ql = 2-i (P2 - PI), 

q2 = 6- i (2Pa - P2 - PI), 

(6) 

(7) 

q.,_1 = [n(n - l)J-i[(n - l)p., - P.,-I - ... - PI]' 

Then (incorrectly keeping the same symbol for the 
function of the new variables) 

[U(g)!Jt](P, ql, ... , q.,) = exp (ia·P - ibE) 

(8) 
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where 

E = EI + ... + En = (1/2m)(p~ + ... + p!) 

and M = nm. The scalar product is now 

(</>, if;) = n- i J ;PcP, ql, ... ,qn-I) 

X if;(P, ql, '" , q .. -I) dP dql ... dqn-l' (9) 

Let us introduce still another notation. Put 

(10) 

where 

2m'O = q~ + ... + q!_1 = Q2. (11) 

But note now that the q/s such that (11) is verified 
can be thought of as a convenient parametrization 
of the n-particle phase space defined by 

L: P. = P, 
• 

2 

"~=E 
~2m ' 

(12) 

corresponding to total momentum-energy (P, E). 
(Note that '0 is the total energy in the center-of­
momentum frame.) In other words we can choose 
as independent variables the total momentum-energy 
(P, E), or else the momentum P and the internal 
energy '0, and a point on the corresponding n-par­
ticle phase space. This phase space (with dimension 
3n - 4) and its generic element will be noted re­
spectivelylI,. and 1r. What we have now is the Galilei 
group representation: 

[U(o)if;](P, '0, 1r) = exp (ia·P - ibE) 

X if;[R-1(P - Mv), '0, R- I 1r]. (13) 

Obviously the representation of the space-time trans­
lation subgroup is thus already in reduced form. 
All that remains to be done, in order to decompose 
the representation into a sum of irreducible ones 
[in the form of (3)], is to reduce the representation 
of the rotation group [which is nothing but the "little 
group" of the total momentum-energy vectorll) 

r/J(1r) ---t r/J(W I 1r) 

for each value of '0 and P. 

(14) 

Angular Momentum and the Usual Coupling Scheme 

Let us see first how this works in the two-par­
ticle case.ll Phase space is then parametrized by the 
vector ql subject to the constraint 

q~ = 2m'O = constant. (15) 

The rotation group representation is the so-called 
"quasiregular" representation,12 in the functions over 
the two-dimensional sphere. It is readily reduced by 
expanding the function in spherical harmonics: 

\]!(P, '0, ql) = t= if;1~(p)n(I::I)' (16) 

The functions if;1~ then belong to the irreducible 
representation [2ml'O, l] of the Galilei group. Of 
course, l is the intrinsic (orbital) angular momentum 
of the two-particle system. We remark that each ir­
reducible representation enters once only in the above 
decomposition. Therefore, the tensor product initial 
representation is multiplicity-free.13 

This is the attractive feature of the two-particle 
case which we lose as soon as we go over to the 
three- (and more) particle case. The rotation group 
representation in the functions over phase-space is 
no longer multiplicity-free and it is not sufficient 
to give the total angular momentum in order to 
specify the irreducible representation of the Galilei 
group, or the corresponding states. Degeneracy pa­
rameters must be introduced if we are to distinguish 
the various equivalent representations (in fact for 
each angular momentum, there are an infinity of 
these!). The usual way of reducing the little group 
representation in the functions over phase-space is 
to expand these in spherical harmonics with respect 
to each of the vector q;'s 

(17) 

where 

The rotation group representation is then 

~I. @ ~I •••• @ ~I.-.. (18) 

By successively recoupling, with standard methods, 
these (n - 1) angular momenta, one can completely 
reduce this representation. Finally, we obtain as de­
generacy parameters the internal energy and angular 
momentum of the first k particles along with the 
relative ones (with respect to this cluster) of the 
(k + 1) particle, for k = I, 2, ... , n - 1. One im­
mediately sees the awkwardness of such a coupling 
scheme in cases where it would be convenient to 

UN. Ia. Vilenkin, Trudy Mosk. Mat. Obsc. 12, 185 (1963). 
18 For a rigorous definition of multiplicity-free representa­

tions, see G. W. Mackey, Bull. Amer. Math. Soc. 69, 628 
(1963). 
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treat all the particles on the same footing, as far 
as it is possible!. 

New Reduction Scheme 

Anyway, there are other methods available for 
reducing the rotation group representation. We now 
present one of these, which in fact gives rise in the 
three-particle case to the Dragt6 classification of 
three-particle states. 

Consider anew the 803 representa~ion: 

R E 803 , (14) 

where 7r belongs to the phase space IT". The functions 
¢ defined over phase space span a Hilbert space 
where the scalar product is defined with the aid of 
the measure on phase-space induced by the ordinary 
measure [see (5)] in the surrounding momentum 
space. But the phase space IT .. is clearly a (3n - 4)­
dimensional sphere 8 3,,-4 imbedded in this momen­
tum space and the measure on it is seen to be the 
uniform measure on the sphere. Let us write it for 
instance as 

dp. (7r) = o(qi + ... + q! - 2m'O) dq[ •.. dq". 

(19) 

In order for the 803 representation in this Hilbert 
space to be unitary, it has to preserve the measure 
(one says to be ' isobaric"), which is readily verified. 
Now, one quickly sees there is a much larger group 
of isobaric transformations. Let 803,.-3 be the orthog­
onal group preserving the sphere 8 3,,-4 and <R be its 
generic element. All the transformations 

free character, no degeneracy parameter is needed 
here. 

(b) Secondly, we restrict ourselves to the 803 

group. The 803 .. - 3 irreducible representations are 
no longer irreducible representations of the 80a sub­
group. Then we reduce them. They are not, in gen­
eral, multiplicity-free representations (for 80a) and 
it can be necessary to introduce some degeneracy 
parameter. 

The situation is then the following: the initial 
80a representation is completely reduced. Each ir­
reducible representation is labeled (in addition to 
its proper label as an 80a representation) by the 
label of the 803,,-3 representation where it comes 
from plus, if necessary, "inner" degeneracy param­
eters. This is then a new method of introducing de­
generacy parameters, which, up to now, has treated 
alike the n particles. This method is illustrated in 
the Appendix by a simple but significative example. 

Physical Significance 

This is interesting, but could be only formal, were 
it not for a most important physical fact. One could 
ask the question: do the labels thus introduced, and 
especially the quantum numbers given by the 803,,-3 

representation, have any physical significance? The 
answer is yes. Consider the quadratic Casimir op­
erator for 803,,-3 of which one of these quantum 
numbers is an eigenvalue. It can be written as16 

A = .L: (L"rx;I.(1)2 
i.i 
a.IJ 

{
a, (3 = 1,2,3 (21) 

i, j = 1,2, ", n - 1 

<R E 803,,-3 (20) where 

are isobaric, so that the Hilbert space considered is 
a unitary representation space for the group 803 .. - 3 , 

The 80,,+[ group is obviously transitive14 onto the 
sphere 8 p • One says also 8 p is an homogeneous space 
of 80,,+1, and the considered representation of 80,,+1 
in the functions over 8" is called the "quasi regular" 
one. Many properties of it are known;12 in particular, 
this quasiregular representation is multiplicity-free: 
in its decomposition into irreducible components, 
each irreducible representation shows up once at 
most. 

We now reduce the 803 representation in two steps: 

(a) Firstly, we embed 803 in 803,._3 and reduce the 
803,,-3 representation. In virtue of its mutiplicity-

14 A group G is said to act transitively on a space 8 if, 
given any two points of 8, there is always an element in G 
taking one into the other. The space 8 is then said to be a 
homogeneous space of the group G. 

L;.«;I.(1 = qi.a dj,{J - q;,{J d i • a 

and 

d",a = iajaq".a' 

The L',a;f,fS operators constitute the Lie algebra 
of the 803,.-3 group. d" is the quantum operator 
corresponding to the distance between the (k + I)th 
particle and the center of mass of the first k ones. 
The d/s are given in terms of the r;'s, position vector 
for the jth particle, as are the q's given in terms of 
the p's [see Eq. (7)]. 

But consider now the classical dynamical vari­
able corresponding to A. As shown by Smith/ this 
dynamical variable is a constant of the motion which 
vanishes if and only if the straight-line trajectories 

11 G. Racah, "Group Theory and Spectroscopy," Princeton 
lectures edited as CERN report, CERN 61-8. 



                                                                                                                                    

NON RELATIVISTIC KINEMATICS 1569 

of the n particles cross each other in some point at 
the same time. More generally, this quantity is the 
smaller as the particle world lines come closer to 
each other. 

It can thus be considered as measuring the minimal 
spatial extension of the n-particle system, or else as 
a generalized impact parameter. This is why one calls 
A the "togetherness operator." Due to this physical 
interpretation of the A operator, one expects its 
eigenfunctions to form a particularly useful basis 
when one has to analyze n-particle states with a 
certain degree of simultaneous spatial localization. 
In fact, one can generalize the usual two-particle 
centrifugal barrier argument, so that we know in 
advance that, when dealing with short-range forces, 
the states with the lowest eigenvalues of A will 
be dominating. 

Summarizing what has been said up to now, we can 
state the method for constructing a basis of n-par­
ticle states according to the above scheme, as follows: 

(a) look for generalized spherical harmonics, i.e., 
functions over the sphere San-4 (the phase-space 
manifold) carrying irreducible representations of the 
group SOan-a (transitive on the sphere San-4), 

(b) for the spherical harmonics belonging to one 
and the same representation of SOan-a, remove the 
degeneracy by classifying them with the aid of the 
representations of a chain of subgroups terminated 
by S03 ::) S02, i.e., the ordinary three- and two­
dimensional rotation groups. 

These functions will then automatically be eigen­
functions of the total angular momentum t and 
its component J 0, distinguished from each other by 
the SOan-a representation parameters and perhaps 
other degeneracy labels. 

The Democracy Concept 

It is time now to recall that, in the three-particle 
case, Dragt does more.6 Indeed, his three-particle 
wavefunctions are labeled by the SUa representa­
tion parameters, and not by S06 ones. The reason 
is that, as is well known, the sphere S2k-l is a homo­
geneous space, not only for the orthogonal group 
SOu, but also for its eubgroup SUk • Of course the 
above described scheme is valid for any transitive 
group16 on the phase-space manifold. In the case of 
SUa, it is known17 that its representation in the 

18 The method may be generalized, with some modifi­
cations, to any group acting on the phase-space manifold 
(possibly in a nontransitive way) and having the usual SOa 
group as a subgroup. 

17 M. A. B. Beg and H. Ruegg, "A Set of Harmonic 
Functions for the Group SUa" (Princeton preprint). 

functions over the sphere S5 is multiplicity-free and, 
by decomposing it, one obtains all the irreducible 
representations of SUa, once for each of them. The 
advantage of using a transitive group smaller than 
SOan-a, is that in each of its irreducible representa­
tions, the multiplicity of a given SOa representation 
will be lower, so that a smaller number of additional 
degeneracy parameters will be needed. 

Now, still in the three-particle case, the SUa sub­
group of S06 can be physically characterized. In 
fact, the permutation group Sa on the three particles 
is a subgroup of the S06 group and as such acts 
naturally in the phase-space S5 and induces inner 
automorphisms in the S06 group. The group elements 
which are stable under the action of the alternating 
group aa C Sa generate a subgroup of S06 which is 
nothing else than SUa.

6
•
9 As a consequence of this 

relationship between SUa and Sa, the Dragt wave­
functions, classified according to the SUa representa­
tions, automatically belong to subspaces which are 
irreducible with respect to the operations of the Sa 
group in the space of three-particle states. In other 
words, any basis vector among Dragt's is also a 
basis vector for an Sa representation. This makes it 
very easy to construct three-particle states obeying 
Bose (or Fermi) statistics. 

Obviously, it would be quite desirable to carry 
on this feature in the n-particle case. One easily 
shows that, except for n = 2, the SOan-a group it­
self is never "democratic" (i.e., generated by elements 
invariant with respect to the alternating group a,,). 
One would then like to consider a "democratic" and 
transitive subgroup of SOan-a. But this is a hopeless 
program; indeed, it can be shown18 that, on an even­
dimensional sphere S2k, there exists no transitive 
compact connected Lie group other than S02Hl' 
Thus, for all even-number-particle cases (beginning 
with 4), there exists no democratic subgroup. Even 
for n odd greater than 3, it seems that the democracy 
requirements are too strong to permit the existence 
of a democratic subgroup. We are then led to con­
clude that "democracy" is a concept with, alas, a far 
too short a range of applicability. 

4. CONCLUSIONS 

(a) We have shown how the problem of finding 
convenient bases for n-particle wavefunctions can 
be dealt with by group-theoretical methods. Indeed, 
it amounts to the problem of reducing a tensor 
product of n irreducible representations of the Galilei 
group (in the nonrelativistic case). 

18 A. L. Onichtchik, Dokl. Akad. Nauk. SSSR 135, 531 
(1961), and other references therein. 
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(b) The purely translational properties are easily 
treated. What remains to be done then, is to con­
sider the rotational properties. It has been shown 
how at this stage, phase space naturally occurs in 
these group-theoretical considerations. 

(c) By embedding the ordinary rotation group in 
a larger group acting in phase space-we have con­
sidered here a group which acts transitively-a new 
reduction scheme has been devised, which supersedes 
the usual step-by-step coupling of n particles. The 
n-particle states so defined are characterized by new 
quantum numbers, one of which describes the col­
lective localization of the system, and which are thus 
of great physical interest. 

(d) The "democracy" concept has been studied 
and it has been indicated that although our method 
does not at first introduce any distinction between 
the n particles, it is not, in general, possible to keep 
them on the same footing until the end of the treat­
ment. 

(e) A relativistic extension of this work will soon 
be published. 

APPENDIX 

We can illustrate the above described reduction 
process by the following simple example: 

Consider the Hilbert space of functions on the two­
dimensional sphere 8 2 with the scalar product 

(j, g) = J J(fl)g(n) d12, 

dn being the usual invariant measure on 8 2 • Con­
sider then the orthogonal group 802 of rotations 
around some fixed axis. The above Hilbert space is 
a representation space for this group, the representa­
tion D being defined by 

[U(cf»f](n) = f(n~), 

where cf> E 802 and ~ is the point on 8 2 deduced 
from n by the rotation with angle (-cf» around the 
chosen axis. Suppose one is to reduce this representa­
tion. We follow the method indicated and embed 802 

into the group 803 • The considered 802 representa­
tion can then be viewed as the restriction to 802~of 
the 803 representation: 

[U(R)t](n) = f(R-In), where R E 803 • 

This is the quasiregular representation of 803 • Let 
us call it :.0. Its reduction into irreducible representa­
tions :.0' of 803 is well known 

a> 

:.0 = EB:.o'. 
1-0 

Let us call now :.o! •• the restriction to 802 of the :.0' 
representation of 803 • This is a reducible representa­
tion of 802 whose reduction into irreducible (one­
dimensional) representations d'" of 802 is naturally 

+, 
:.o~.. = EB dm

• 
m--l 

The contents of irreducible components of the initial 
802 representation D is then given by 

co co + l +(1) += 

D = EB :.o~.. = EB EB d~l) = EB EB d~l). 
1-0 1-0 ... --1 m--a> I-Iml 

Of course each d'" representation shows up with an 
infinite multiplicity, i.e., once for each l ~ m. But 
the associate degeneracy is naturally removed by 
labeling each d'" with the index of the :.o! •• representa­
tion from which it originates. This is the meaning of 
the notation d'(l). 

As concerns a basis for tp.e Hilbert space which 
exhibits this two-step reduction process, one is 
obviously led to consider the spherical harmonics 
y,,;(n)-the z axis, relatively to which m is quantized, 
being of course the axis which defines the 802 group. 
Then the Y"; with l fixed span an irreducible rep­
resentation of 803 , Restricting ourselves now to 802 , 

we see that Y"; is precisely the basis vector for the 
(one-dimensional) representation d(1)' We have thus 
obtained a basis for the initial 802 representation 
which clearly exhibits its contents in irreducible 
components and such that degeneracy is removed 
by the 803 representation label. 
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The kinematics of a nonrelativistic three-particle system is studied with the help of the general 
method devised by Levy-Leblond and Lur9at. Basis states are constructed which are eigenstates, 
in addition to the total momentum-energy, angular momentum, etc., of new observables; among 
these, the "togetherness tensor" describes the simultaneous localization of the three particles and 
therefore is of great physical interest. All of these observables arise as Casimir operators of a "great 
group" acting on the three-particle phase-space manifold in a transitive way, and of BOme of its 
subgroups. In the present case, by trying to keep all the particles on the same footing ("democracy" 
arguments), we are led to choose the SU, group as a particularly convenient "great group". We thus 
recover completely the Dragt classification of non-relativistic three-particle states. The explicit 
calculation of the basis functions is done in a new way, by analytical methods, solving partial deriva­
tive equations. This enables us to establish the most general form of these basis functions. 

INTRODUCTION 

I N the preceding paper, I it has been shown how 
group-theoretical considerations on the phase­

space manifold of N particles enables one to con­
struct a new complete set of commuting observables, 
thus giving rise to an interesting classification of 
N-particle states. We wish to apply here this method 
to the case N = 3 thus recovering Dragt's results.a 

For an account of the general theory, and of its 
physical meaning, the reader is referred to. 1 Let us 
state briefly that our goal is to construct a basis for 
three-particle wavefunctions carrying the irreducible 
representations of the Galilei group arising in the 
decomposition of the tensor product of the three 
irreducible representations corresponding to the three 
particles to be coupled. The translational properties 
are easily dealt with by fixing the total momentum­
energy 4-vector. The wavefunctions of the system 
can now be considered as functions on the phase­
space of this system, i.e., on the manifold defined by 

PI + pa + Ps = P, (1) 

p~ + p~ + p~ = 2mE, 

where PI, Pa, Ps are the momenta of the three parti­
cles, m is their common mass, and (P, E) the total 
momentum-energy 4-vector. 

PHASE SPACE AND THE ROTATION GROUP 

In order to classify the "rotational" properties of 
the system, we have to study the representation of 

* Postal Address: Laboratoire de Physique TMorique et 
Hautes Energies, BAtiment 211, Faculte des Sciences, Orsay 
(S.-et-O.) France. 

1 J. M. Levy-Leblond and F. LurQat, J. Math. Phys. 6, 
1564 (1965). 

• A. J. Dragt, J. Math. Phys. 6, 533 (1965). 

the rotation group in the functions on the phase­
space . 
. With PI, pa, Pa the momenta of the three particles 

we consider, we define 

P = PI + P2 + Ps, 

q = (1/v2)(P2 - PI), 

q' = 6-1(2pa - pa - PI)' 

The phase-space is then parametrized by (q, q') with 
the constraint 

(3) 

We deal thus with a five-dimensional sphere Bs. 
We have to reduce the following representation of 
the rotation group: 

if;(q, q') --+ if;(R-lq, R-Iq'), R E 80a, (4) 

where if; is any vector of the Hilbert space of square­
integrable functions on the Bs sphere with the scalar 
product 

(</>, if;) = J 4i(q, q')if;(q, q')5(q2 + q,2 - Q2) dq dq' 

(5) 

7r is any point on Bs [i.e., a six-component vector 
(q, q') with length fixed] and d7r is the invariant 
measure on B5 , suitably normalized. This Hilbert 
space is also a representation space for the 806 group 
according to 

if;(7r) --+ if;(c:R- 17r), c:R E 806 (6) 

THE DEMOCRATIC SUBGROUP 

We consider now the group Sa of permutations 
among the three particles. This is a subgroup of the 

1571 
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S08 group. Indeed, with each permutation 

C~ i~ D 
is then naturally associated a mapping of phase­
space onto itself, defined by the transformation 

(PI' P2, Pa) -7 (P." P." Pi,). 

Looking for instance at the two generators CPl2 [the 
(1 2) interchange permutation] and e [the (1 2 3) 
cyclic permutation] of S3, we obtain 

@u[:,] [-~:] [:J (7) 

e[q] [-! -!v3] [q ], (7') 
q' !v3 -! q' 

where the 6 X 6 orthogonal matrices CPl2 and e 
are written as four 3 X 3 blocks. Consider now 
the cyclic permutation e. It generates an automor­
phism of S06, in fact an inner one since e E S06. 
This is the transformation 

<R' = eCRe-1 for each CR E S06. 

We search for the S06 elements which are stable 
with respect to this automorphism-and thus for 
all the group of automorphisms induced by the 
alternating subgroug fia C Sa. These form a sub­
group D E S06, called "democratic subgroup" (we 
shall explain this name a few lines below) and defined 
by 

d = ede-1 for each dE D. (8) 

Let us write S06 matrices acting on the six-dimen­

sional vector 71" = (:,), as four real 3 X 3 matrices: 

{

aaT + flflT = 1 

g = [: fl] with ggT = ll, i.e., -y-yT + {jOT = 1 

I {j OI"(T + fl{jT = o. 

The democracy condition (8) then requires 

(9) 

fl + -y = 0, 01- {j = o. (10) 

The D subgroup is thus generated by the matrices 

d = [01 fl] with ddT = ll, i.e., {aa
T 
+ flflT = 11 

-fl a aflT - flaT = o. 
(11) 

Associate now with each d E D, the 3 X 3 matrix 

u(d) = a + ifl. (12) 

After (11) these matrices obey uut = 11, and generate 
an Ua group. But the one-to-one correspondence 
u ~ d is easily seen to be a group isomorphism so 
that in fact D is isomorphic to Ua• The way D acts 
on phase-space (the S5 sphere) can now be restated 
by introducing the complex three-dimensional vector 
z(7I") = q' + iq which spans a complex sphere. We 
have the correspondence 

71" -7 d7l" implies z(7I") -7 u(d)z(7I"). 

Note that, as the subgroup SUa of Ua still acts 
transitively on S5, it will be sufficient, from now on, 
to restrict to it our attention. The advantage of the 
SUa (or Ua) group over the S06 group is that, due 
to its "democratic" nature, the functions belonging 
to irreducible representations of it will automatically 
enjoy nice symmetry properties with respect to the 
permutation group on the three particles. Indeed, 
since, by definition, each element of the "democratic" 
group commutes with the cyclic permutation e, 
the same property will hold for the various operators 
constructed from its Lie algebra, operators of which 
the basis functions belonging to irreducible rep­
resentations will have to be eigenfunctions. As a 
consequence of this commutativity property, these 
basis functions automatically will be also eigenfunc­
tions of the cyclic permutation operator. 

Finally, let us remark that the ordinary SOa rota­
tion group is the subgroup of S06 characterized by 

fl = -y = 0, a = {j, (13) 

Obviously it is still a subgroup of SUa with simply 

u = a, (13') 

CHOICE OF COORDINATES 

What we have to do is to reduce the SUa rep­
resentation in the functions on the sphere S5. The 
result of this reduction is already known: each ir­
reducible representation of SU3 appears exactly 
once in the decomposition. Beg and Ruegg3 have 
accomplished this reduction and introduced a set 
of harmonic functions on the sphere S5 which carry 
these irreducible representations. However, their ex­
plicit results are of no use to us. Indeed, in order 
to obtain states of definite angular momentum, what 
we need are basis states which belong to irreducible 
subspaces with respect to the SOa group, the rep­
resentation of which we, finally, have to reduce. In 
other terms, we define the basis functions we are 

3 M. A. B. Beg and H. Ruegg, J. Math. Phys. 6, 677 
(1965). 
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looking for, as eigenfunctions of a complete set of 
commuting observables which has to comprise in­
variant operators of SUa and the usual total angular 
momentum observables (say, t and J o) associated 
to the chain SOa :J S02 of SUa subroups, plus others, 
if necessary. The chain SUa :J SOa :J S02 is not 
the one discussed by Beg and Ruegg. Their harmonic 
functions are in fact classified with the help of the 
more familiar chain SUa :J SU2 :J U l • The first 
thing to do is to introduce a convenient coordinate 
system on the sphere S5. This has been discussed 
by Dragt.2 A given configuration (Pl, P2, Pa) is pa­
rametrized 4 : 

momentum triangle from some "reference" orienta­
tion to its actual one. The most elegant way of doing 
this is to consider the momentum triangle as a solid 
by fixing unit masses to each vertex. Its principal 
axes of inertia define three orthogonal unit vectors 
(u, v, w) [u, v in the momentum triangle plane 
w orthogonal to it]. Let (i, j, k) be three orthonormal 
reference vectors. We choose as a second set of pa­
rameters the Euler angles (a, fJ, 'Y) of the rotation 
needed to carry (i, j, k) on (u, v, w). Defining 

p = cos 2t/t, 

it can be shown that 

(15) 

(1) by its projection onto the Dalitz plot, i.e., q = Q(cos t/t sin !cpu - sin t/t cos !cpv), (16) 
by the two polar coordinates (p, cp) such that q' = Q(cos t/t cos !cpu + sin t/t sin !cpV), 

pi = !Q2(1 + P~k)' h = cos (cp + ikn-), or else 

k = 1,2,3. (14) z = Qe!'''(cos t/tU - i sin t/tv), (17) 

(2) by the rotation necessary to transform the with 

u 

[

cos'Y cos fJ cos a - sin 'Y sin a 

V = cos 'Y cos fJ sin a + sin 'Y cos a 

-sin 'Y cos fJ cos a - cos'y sm a 
sin fJ cos a] [ ij 

-sin 'Y cos fJ sin a + cos 'Y cos a sin fJ sin a j. (18) 

w - cos 'Y sin fJ 

This set of coordinates has the great advantage that, 
acting on phase-space with any SOa element, R 
modifies only the (a, fJ, 'Y) coordinates. Indeed, call 
Ro the (a, fJ, 'Y) rotation. We see at once that: 

z ~ Rz implies Ro ~ RRo. 

In other terms, the orbits of the SOa group in phase­
space are isomorphic to SOa itself. The (cp, t/t) pa­
rameters label the different orbits, while the (a, fJ, 'Y) 

parameters label the different points of a given orbit. 
We have yet to describe the measure on phase space 
with the help of these coordinates. A simple Jacobian 
calculation gives 

dpl dp2 dpa ~ dPQ5 dQp dp dcp dR, (19) 

where dR is the invariant volume element for SOa, 

dR = da Id(cos fJ)1 d'Y. (20) 

On the S5 sphere itself the measure is then defined by 

d1r = pdp de,? dR. (21) 

It is clear that by projecting onto the Dalitz diagram, 
one gets the usual uniform measure in the plane, 
pdpdcp. 

4 In what follows, we stick to the center-of-mass frame, 
i.e., the condition Pl + P2 + pa = P = 0 is always fulfilled. 
Since pure Galilei transformations leave phase-space invariant, 
this is no restriction. 

sin 'Y sin fJ cos fJ k 

THE DIFFERENTIAL OPERATORS 

Weare now in position to write as differential 
operators the various operators of which the basis 
functions we look for are to be eigenfunctions. 

The SUa representation is characterized by the 
eigenvalues of: 

(a) The Laplace-Beltrami operatol on the sphere 
S5 (quadratic Casimir operator for SUa)-which is 
also the "togetherness operator,,6- is obtained by a 
tedious calculation: 

a2 a 
.6. = at/t2 + 4 cot 4t/t at/t 

4 ~ 4 sin2t/t ~ 
+ cos2 2t/t acp2 + cos2 2t/t acp aa 

+ ( 1 + 2 1 + cos 2t/t cos 2a cos
2 

fJ) ~ 
cos2 2t/t sin2 2t/t sin2 fJ aa

2 

_ 2 cos 2t/t sin 2a 1 + cos2 fJ ~ 
sin2 2t/t sin2 fJ aa 

----
6 See, for instance, T. Y. Thomas, Concepts from Tensor­

Analysis and Differential Geometry (Academic Press Inc., 
New York, 1961). 

S What we call the "togetherness operator" is the squared 
magnitude of the "grand angular momentum tensor" intro­
duced by Smith. 7 See Refs. 1 and 2 for its relation to the 
Casimir operator of SU 3. 

7 F. T. Smith, Phys. Rev. 120, 1058 (1960). 
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+ 2 1 - cos 21/1 cos 2a ~ 
sin2 21/1 iJ{f 

+ 2 1 + cos 21/1 cos 2a cos fJ 2-
sin2 21/1 sin fJ iJfJ 

+ 2 1 + cos 21/1 cos 2a _1_ ~ 
sin2 21/1 sin2 fJ iJ'Y2 

+ 4 cos 21/1 cos 2a cos fJ 2-
sin2 21/1 sin2 fJ iJ'Y 

+ 4 cos 21/1 sin 2a cos fJ ~ 
sin2 21/1 sin fJ iJa iJfl 

_ 4 1 + cos 21/1 cos 2a cos fJ ~ 
sin2 21/1 sin2 fJ iJa iJ'Y 

- 4 cos21/1sin2a_l_~. (22) 
sin2 21/1 sin fJ iJfl iJ'Y 

It looks quite a formidable task to diagonalize this 
monster, but in fact, we shall find many simplifica­
tions.8 

(b) A linear operatora 

iJ iJ 2 iJ C = z·- - z*·- = -;--. (23) 
iJz iJz* ~ iJ<p 

If the harmonic function F belongs to the (p, q) 
representation of SUa, then 

f1F = -X(X + 4)F, X = P + q, (24) 

C F = p.F, p. = p - q. (24') 

Now, in order to distinguish the various harmonic 
functions belonging to a given SUa representation 
we have chosen to diagonalize 

(25) 

(26) 

corresponding to the subgroup chain SUa:> SOa :> 
S02. As discussed by Dragt,2 the restriction to SOa 
of a given SUa irreducible representation is not 
multiplicity-free and a further degeneracy param­
eter is needed. A known cubic operator n can play 
this role. However the low-dimension SOa irreducible 
representations (J = 0, 1) show up only once9 in 

8 It must be said that there exist several papers dealing 
with the eigenvalues and eigenvectors of this operator. How­
ever, the coordinate system used are very inconvenient for 
our purposes-although they lead to an expression easier 
to handle. See, for instance: J. D. Louck, J. Mol. Spectr. 4, 
298 (1960); K. D. Granzow, J. Math. Phys. 4, 897 (1963); 
5, 1474 (1964). 

g G. Racah, Rev. Mod. Phys. 21, 494 (1949). 

the restriction of a SUa representation to SOa. For 
the time being we will limit ourselves to these J 
values, so that we will not have to consider n. 

SOLVING THE EIGENVALUE PROBLEM 

Consider now the eigenfunctions of t and J o. 

After the Peter-Weyl theorem,lO any square-inte­
grable functions (with respect to the invariant meas­
ure) on a compact group can be expanded on the 
orthonormal basis of the group constituted by the 
matrix elements of the irreducible representations. 
Thus, for any function on Ss, we can write 

F(p, <p, R) = L: g~ .. ,(p, <p)'J)~ .. ,(R), (27) 
;mm' 

where R stands for the SOa element (a, fl, 'Y). Now 
if F is to be an eigenfunction of t and J o [with eigen­
values L(L + 1) and M], it is necessarily of the 
form 

FLM(p, <p, R) = L: g~M(P' <p)'J)~M(R). (28) 

We now deal immediately with the <p dependence. 
Indeed, in order for F to be an eigenfunction of C 
(with eigenvalue p.), it must be written 

F~M(P, <p, R) = eii~'" L: g~M(P)'J)~M(R). (29) 
m 

We have now determined the general form of the 
functions we are looking for. 

All that remains to be done is to determine the 
g~M(P) functions. In order to do it, one substitutes 
(29) into (22). After having applied the differential 
operator f1, one expands the rhs on the SOa rep­
resentation matrix elements anew and identifies it 
term by term with the lhs expansion. One thus gets a 
coupled system of second-order differential linear 
equations for the g's. The task is further reduced by 
the following remarks: 

The lowering and raising operators J ± commute 
with f1, so that the g~M(P) are in fact independent 
of M. It suffices then to do the job for M = 0 (no 
more'Y dependence). 

Here parity is, of course, a good quantum number, 
commuting with all the operators we already con­
sidered. As seen from (18) the parity operation cor­
responds to the substitution 

P: a ~ 7r + a (p, <p, fl, 'Y unchanged). (30) 

For a given L, the g's then split into two subsets 
corresponding to P = + 1 (m even) and P = -1 
(m odd), whose differential systems are uncoupled. 

10 See for instance: L. Pontrjagin, Topological Groups 
. (Princeton University Press, Princeton, New Jersey, 1939), 

Sec. 29. 
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This process can be illustrated in the two simplest 
cases where only one g function is to be considered. 

EXAMPLE A: LP = 0+ 

The functions have the following form: 

F~:t.o(p, ip, R) = e;'"'' g(p). (31) 

The g function has to obey the differential equation 

(1 - i)g" + (; - 3p )g' 

+ UA(A + 4) -lli]g = O. 

This is easily solved by putting 

g = pil"ih(i). 

We obtain for the h function, the equation 

x(1 - x)h" + [1 + ! IJLI - (2 + ! IJL\)x]h' 

+ n(A - IJ.I\)(A + IJLI + 4)h = 0, 

whose solutions are Jacobi polynomialsl1
: 

hex) = 5"}(}.-II'I)(I + ! IJLI; 1 + i IJ.lI; x). 

Finally, the complete solution reads 

FA.,. ( R) _ ;'''p ;11.1"" 
0+.0 p, ip, - e P "'}<>'-I .. 1> 

(32) 

(33) 

(34) 

(35) 

X (1 + ! IJ.lI; 1 + ! !JL!; x2
). (36) 

It is readily verified that for different (A, JL) values, 
the corresponding functions, due to the properties of 
Jacobi polynomials, are othogonal with respect to 
the scalar product induced by the measure (21). 

EXAMPLE B: LP= 1+ 

The basis functions have the following form: 

F~t,M(P' ip, R) = e;'I .. I"g(p):O~M(R). 

As a function of 1/1, g obeys 

d2g dg 
d1/l2 + 4eot 41/1 d1/l 

[ 
JL2 4 ] + A(A + 4) - cos2 21/1 - sin2 21/1 g = O. 

(37) 

(38) 

Singular terms in the last coefficient are dealt with 
by putting 

whose solutions are still Jacobi polynomialsl1
: 

k(x) = ff"1<>'-1 .. 1-2)(2 + ! IJ.I!i 1 + ! IJL!; x). 

The complete solution now appears as 

F~t. N(P, ip, R) = ef ..... sin 21/1(cos 21/1);1 .. 1 

X ff"1(H .. I-2)(2 + ! IJ.I/; 1 + ! IJLI; 

cos' 21/1):O~M(R). 

(41) 

(42) 

These solutions are the ones found by Dragt2 (with 
a slightly different definition of Euler angles). 

CONCLUSIONS 

It has been shown how the general considerations 
of Ref. 1 can be readily applied to the three particle 
case, leading to a classification of three-particle 
states according to the SUa representations, which 
is the one introduced by Dragt.2 

The explicit calculation of the basis functions 
in this scheme has been undertook by analytical 
methods, the eigenvalue problem of our complete 
set of commuting observables being reduced to the 
solution of partial derivative equations. We have 
thus been able to establish the general form of these 
basis functions [see (29)], what had not been done 
before. 

However, except in some simple cases, the complete 
solution of the problem is quite complicated and 
algebraic methods seem to be more powerful.2,12 

For a discussion of the symmetry properties of 
the basis functions thus obtained (which is a most 
important topic), the reader is referred to Dragt's 
original work.2 Dragt indicates also how to generalize 
the method used here to the case of three particles 
with unequal masses. 

As a last remark, the possibility exists to still 
generalize it to the case of three particles with spin, 
while retaining the nice symmetry properties of the 
basis functions. It suffices to consider an L-S cou­
pling between the total angular momentum (intro­
duced as before) and the total spin, this one being 
obtained by a symmetrical coupling of the three 
individual spinS.l3 
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We then obtain for k(x) the equation 

x(I - x)k" + [1 + i IJLI - (3 + i IJ.ll)xJk' 

+ HA(A + 4) - IJ.I!(!JLI + 8) - 12]k = 0, (40) 
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In the double scattering case, we show that the introduction of a pole in the S-matrix elements, 
is consistent with a description in terms of successive interactions. 

We then show that among Olive's class of possible "propagators" c(k' - m' + i.)-l - (1 -c) 
·(k' - m' - i.)-l, only the usual value c = 1 gives a consistent result. 

1. INTRODUCTION 

WE consider double scattering and study the 
relationship between the propagation of an 

intermediate real particle (phenomenological de­
scription) and the propagator pole corresponding 
to it in the framework of S-matrix theory. 

What we want to prove is that the existence of 
the conventional pole in S-matrix theory is con­
sistent with a phenomenological description in terms 
of successive scatterings. This consistency is a phys­
ical requirement which, as far as we know, has only 
been verified in theoreies where it is possible to 
follow the evolution of the physical process in 
space-time. l 

The first thing we need is a correspondence be­
tween the ways of describing things in S-matrix and 
phenomenological formalisms, in order to compare 
S-matrix and phenomenological results. In S-matrix 
theory we use wave packets in momentum space, 
in order to avoid divergence problems associated 
with the presence of the pole. On the other hand, 
we use currents (probability density and current 
density) in the phenomenological description of the 
motion of particles. We adopt the usual correspond­
ence between wave packets and currents. 

We now note that the quantities we have to 
compare are not scattering amplitudes, but transi­
tion probabilities, since these are the quantities that 
appear in the phenomenological description. 

In Sec. II, we study simple scattering. This is 
fairly trivial, but we use it to exhibit the formalism. 
Using the conventional relation between S-matrix 
elements and cross section, we verify that the 
phenomenological formula, which links the transi­
tion probability to the currents and the cross section, 
gives the same result as the S-matrix formula. This 

1 ~e~ A. Messiah, Quantum Mechanics (North-Holland 
Publishing Company, Amsterdam, and Interscience Pub­
lishers, Inc., New York, 1961), Vol. 2, Chap. 19 for the study 
of the Schriidinger case. 

is shown under some reasonable conditions, usual 
in quantum mechanics.2 

In Sec. III, we study double scattering. On the 
one hand, we obtain the S-matrix formula with the 
usual pole and by using the factorization of the 
residue into the product of the amplitudes for the 
individual scatterings. On the other hand, we get 
the phenomenological formula by writing the transi­
tion probability for the first scattering, the current 
of the intermediate particle and the transition prob­
ability for the second scattering. The two formulas, 
which are quite different, disagree for finite separa­
tion between the two targets. However, we find that 
in the limit of infinite separation, the two formulas 
give the same result. This is sufficient to satisfy 
the physical consistency requirement. 

We finally show on a simple example that this 
result is not true for an arbitrary propagator satis­
fying unitarity plus cluster decomposition. In fact, 
among Olive's class3 

c 1 - c 

where c is an arbitrary real number, only the value 
1 of c agrees with the phenomenological result 
(or zero if we had used opposite sign convention in 
the Fourier transform). Eden and Landshoff4 also 
recently tried to show that the value 1 of c was fixed 
by a causality requirement. But we find their argu­
ment unconvincing not only because it lacks math­
ematical rigor, as the authors themselves recognize 
but because it makes ad hoc use of quantities such 
as negative energies, off-mass-shell elements, etc., ... 

• The problem was first studied by Chew and Low. See 
Ref. 1, Vol. 1, Chap. 10. 

aD. 1. Olive, "The Exploration of S-Matrix Theory", 
(Cambridge University and Carnegie Institute of Technology 
Preprints). 

4 R. J. Eden and P. V. LandshofI, "The Problem of 
Causality in S-Matrix Theory." (Cambridge University 
preprint). 
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which are foreign to S-matrix theory, and which we 
do not find necessary to use. 

The particles are supposed spinless and with 
masses different from zero. 

II. THE SIMPLE SCATTERING PROBLEM 

A. S-matrix result 

We first calculate the transition probability using 
the S-matrix formalism. A state of one spinless 
particle is characterized by a wavefunction IP(p) 
where P is the 3-momentum of the particle and is 
written as 

la) = J IPa(P) Ip) dp with Po = (p2 + m2)!. 
2po 

The normalization is 

(p' I p) = 2poo(p - p'), 

so that (ala) = 1. 

J IIP(pW dp = 1 
2po 

(1) 

In what follows, IP,,(P)(lf'b(q), IPe(r» will be taken 
infinitely differentiable and vanishes outside a sphere 
with center at P, (Q, R) and diameter d. We shall 
ultimately have to take limits when d goes to zero, 
and then define our wavefunctions as 

IP.(p) = ca4>a[(P - P)/d + P], 

IPb(q) = Cb4>b[(q - Q)/d + Q], 

IPe(r) = cc4>c[(r - R)/d + RJ, 

(1') 

where Ca, Cb, Cc are normalization coefficients and 
4>", 4>b, 4>c are fixed functions, vanishing outside a 
sphere with diameter 1. 

One integrates over the final states with the 
measure E(Plql) dpIi2pIO dqIi2qlO, where PI and ql 
are the momenta of the final particles and E char­
acterizes the efficiency of the measurement appara­
tus. We finally define T through S = 1 + iT and 
t through 

(il T If) = (il t If)o(P, - Pi)' (2) 

P, and P, being the momenta in the f and i states. 
We then write 

w = J :(P~ql) dpt dq,(p'q'l t' !Plql)(Plqr! t Ipq) 
PlO qlO 

X O(4)(P + q - PI - q')IP~(p')IPip)IPt(q')CPb(q) 

(3) 

We use O(4l(p + q - Pl - q\) to integrate over 
the new variables PI + ql and Ipd and are then left 
with integrations over 

p, = pJIPll, p, q, p', q': 

W = J GCPl, p, q, p', q') dn,;,IP:(p/)IPa(P)IPt(q')IPb(q) 

X o(p + q - p' - q') dp dp' dq dq', (4) 

where G is a regular function, since the t-matrix 
elements are supposed to be. Then for small enough 
d, we have 

G- 1 iJG/iJpi d « 1. (5) 

Pi is any of the variables p q p'q'. 
We then approximate W by putting P, Q in place 

of p, p'; q, q' in G. It is legitimate as one verifies 
that due to (1) and (I') 

W 0: ~(1 + Oed G-laG/iJpi»' (6) 

This gives the formula 

TAT 1 J E(P\ql) d d 
fr ~ 16p2Q2 2 2 PI q, 

o 0 PIO qlO 

X o(P + Q - PI - ql) I(PQI t Ip,qlW 

X f IP~(P')IPa(P)IPt(q')IPb(q) 
X 04(p + q - p' - q') dp dp' dq dq'. 

Equation (5) is, in fact, satisfied if 

(I/E)(aE/iJp;)d« 1; 

(7) 

Pi is any of the variables Plql; (5a) 

m-1d« 1, where m is any of the masses 
of the particles involved; (5b) 

It(p~,q,) :;; dl «1, where t(Pqplq,) = (Pql t !Ptq,). 

(5c) 

Equation (5a) means that the measuring apparatus 
cannot discriminate between the momentum com­
ponents of the wave packets. (5b) ensures that 
p;;l(iJpo/iJp)d « 1 and means that l/d is large 
compared to the Compton wavelength of the par­
ticles. l/d will be a little later interpreted as the 
extension in space of the wave packet and that 
condition is well known from quantum mechanics.2 

The condition (5c) is known too. Let us only note 
that Froissart, Goldberger, and Watson5 need it to 
define such physical notions as impact parameters. 

5 M. Froissart, M. L. Goldberger, and K. M. Watson, 
Phys. Rev. 131,2820 (1963). 
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The condition then means that the impact parameter 
is small compared to the extension in space of the 
wave packet. 

B. Phenomenological Result 

We now write a phenomenological formula for W. 
We use currents jl'(x) to describe the motion of the 
particles. x is a point in time and space, jo(x) the 
probability density and j(x) the current density of 
the particle. 

The usual formula which linked the transition 
probability to the number n 1 of incident particles 
with velocity VI = P 1/ Po, the number n2 of scattering 
centers at rest and the cross section is lVB = nln2VICTB' 

In the limit where the velocity is supposed well 
defined, we write it, by using the probability den­
sities j~(x) for the incident particle and j~(x) for the 
scattering center: 

with 

W E(X) = (PdPo)j~(x)j~(X)CTE' (8) 

Since PdPo = P 1Qo/POQo, and PIQo is «PQ)2 -
(mamb)2)i in the particular frame where the second 
particle is at rest, we get the invariant formula 

WE = [(PQ)2 - (mamb?]!CTE Po~o J j~(x)j~(x) dx, 

(8') 

where it is also possible to write j~/ P 0 = j:/ P I' 
(p. = 1, 2, 3) and j~!Qo = j~/Q •. 

C. Correspondence between Secs. A and B 

We now take 

Thus we make a correspondence between the S­
matrix and the phenomenological formalisms by 
interpreting the abstract variable x in (9') as time 
and space and j .. (x) defined by (9) as the current. 

It is satisfying because the ordinary properties 
of a current are realized: 

(11) 

J io(x) dx = 1, 

and for small-enough d, jo(x) > 0, due to (1) and (I'), 

where 

m. THE DOUBLE SCATTERING PROBLEM 

We now study the double scattering problem. The 
initial state is defined by the three wavefunctions 
lPa(P) , fPb(q), fPe(r) and we have here to consider an 
efficiency E(:Plqlrl)' If there were no singularity in 
the t-matrix elements, one would obtain in the same 
way as in the simple scattering case (for d small 
enough so that the S-matrix elements are slowly 
varying) 

W ~ J E(Plqtrt) dpt dqt dr
l 2Plo2qlo2r,o 

(13) 

jix) = f*(x) al'f(x) , (9) with 

f(x) = (2'lIrl J 8(po)5(p2 - m2)IP(:PV'Pz d4p. (9') 

This gives 

PI'~' J J~(x)j:(x) dx 

1 1 J ~ 4PoQ~ (211")2 1P':(:p')lPa(:P)lPt(q')lPb(q) 

X ~(p + q - P' - q') dp dp' dq dq'. (10) 

Equation (8') is then identical to Eq. (7) with 

(211")2 J E(ptqt) 
CTE = 4«PQ)2 _ (mamb)2)! 2pto2qtO dpi dq, 

X I(PQI t IplqlW ~(4)CP + Q - PI - ql)' (10') 

Here we suppose the kinematics as determined by 
the vanishing of E and the fP'S, such that (p+q_pt)2 
can get equal to m2 where m is the mass of some 
possible "intermediate" particle. The theories then 
introduce a singularity in the t-matrix element pro­
portional to the "propagator" D(k)2 = -I/211"/(k2-
m2 + if), where k = P + q - PI and 1/211" comes 
from our normalizations. We suppose there is no 
other combination of initial and final momenta giving 
a singularity in the integrand. 

We then make the usual hypothesis in as-matrix 
theory: 

(Pqrl t IPtq1T1) = ffi(Pqrplq1T1) X DW), (14) 
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where 

and is a regular function. 
We never use t-matrix elements off the mass shell. 
With the correspondence made above between 

currents and wavefunctions, the wavefunction of the 
third particle translated in space through a vector e 
is ~.(r)e-i,r. 

We first study the formula for transition prob­
ability obtained through the S-matrix formalism with 
the usual propagator pole, then derive the phenom­
enological formula, and compare them for large p. 

A. Transition Probability with the Usual Propagator 

We are free to take R=O in the following. We have 

x CR(pqr, Plqlrl)CR*(p'q'r'PlQlrl)D(k2)D*(k,2) 

X oC4t~: P - L PI) o(4)(L P - L p')e-·,{r-r') 

X ~!(p.2 ~ ~t(q') ~b(q) 
2p~ 2po 2q~ 2qo 

X ~~(r:) ~c(r) dp dp' dq dq' dr dr'. 
2ro 2ro 

(14) 

Then one has (and this is one of the main points to 
achieve our proof!): 

1/2 [ 1 
='2 2 . 2 2 • k -k-u k-m+1,E 

1 1 
- k2 2 • + k'2 2 + . - m - te - m 1,f 

1 ] 1/2 
- k2 _ m2 

- if + k'2 - k2 
- if 

[ 
1 1 

X 22 '+22' k-m-'tf k-m+u 

(15) 

41r2 DW)D*(k,2) 

= k'2 i~ . [oW - m2
) + 0(k,2 - m2

)] 
- - tE 

with 

k,2 - e - if = -(2~Kl + if) 
+ 02(a, ~,p - P, ., .), (16) 

where 

Kl = P + Q - Ph ~ = r - r', a=r+r', 

and O2 is a second-order quantity. 
For the sake of simplicity, we now suppose the 

kinematics such that the equation 

(p + Q - PI)2 - m2 
= 0 

has at most one solution for every fixed direction 
of k = p + q - PI, and that the derivative of 
(p + q - PI)2 relative to Ikl does not vanish. 
In Eq. (14), we use o(4)(LP - LPI) to integrate 
over the new variables L PI and Iqll and then use 
the new variables kl = ktllkll and 8 = (p + 

)
2 2 

q - gl - m. 
Due to (15') W separates into three parts, Wb 

Ww WIll; 

X e-i'~ o(4)(L P' - L p)~!(P')~ .. (P)~'t(q')~b(q) 
X ~~(r')~c(r) dp dp' dq dq' dr dr' dOa• dOg. d8 (15") 

with 

HI = i1l"[0(e - m2
) + 0(k,2 - m2

)], 

H2 = P/(k2 
- m2

), 

Ha = _P/(k,2 - m2
). 

The function G is regular and satisfies conditions 
(5a, b, c) for small-enough d, as the <R-matrix 
elements are supposed regular. 

We now define 

~(~) = J ~!(P')~ .. (P)cp't(q')CPb(q)cp~[!(a - ~)] 

X~c[!(a+~)]o(LP'- LP)dpdp'dqdq'da. (17) 

For small enough d and with the hypothesis that 
the velocities of the first two particles are different, 
i.e., IP/Po - Q/Qo/ is supposed large compared to 
d, ~(~) is infinitely differentiable. In fact, 

04( L P' - L p) = 03( L p' - L p) 

X o[(P/Po - Q/Qo)(P - p') 

+ O(p + p' - 2p, P - p', a, ~)]. 

We verify that the derivative of the function inside 
the last o-function relative to the variable (PI Po-
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QIQo)(p - p') never vanishes and is almost unity 
if p and p' lie on support of <'oa(P). We then integrate 
withthenewvariablesLP',LP, (PIPo - QIQo) X 
(p - p'), ... and <,O(bl) is infinitely differentiable 
as are all the functions involved. Furthermore, <,O(bl) 
vanishes outside a sphere with center at 0 and 
diameter 2d, owing to the vanishing of <,OC' 

With the same kind of approximation as in the 
simple scattering case, one then gets by putting P(Q) 
in place of pp' (qq') in G, 0(k2 - m2), 0(k,2 - m2): 

dWl J F (K~ ) d 1 ( ) -ie~ d 
dn., ~ 1 1 nx, blKl + if <,0 bl e ~, (18) 

where we do not write explicitly the dependence 
of Fl upon ql' 

We now write 

-1 1 J J( ~Kl + if = IKII O( I ° ~/) 

X 0(2) (KI x ",')eie 'G d",' , (19) 

J F1(J(1)dnx,O(J(lofj') O(2)(J(l X",') = F~~'). (20) 

We have defined O(2)(J(1 x",) as follows. Take a 
frame where J( 1 is the unit vector of the first axis: 

We then get 

dWl = _1_ J F (AI) ri~ J i(e'-elG (It) dlt 
dn. IK lIP '2 e <,0 '" '" ., 1 P 

1 J d ' = IKil F1(p') p~2 g(",' - "') d",' (21) 

with 

where 

A [(271l 1 1 
F(p) = Kl 411' 64P~Q~~ 

X J E(Plqlr1) [CR(PQRplqlrl) 12 
2p102ql02rlO 

X 04(L P - L PI) o«P + Q - PI)2 - m2
) 

X d( L Pl)qi d Iqll IKll2 d IKII1,_,; (24) 

and 

for (P + Q - gl) = m 2
• These are the only elements 

to consider due to O(P + Q - Pl)2 - m 2
). 

We now consider WII and WIII of Eq. (15"), and 
use the variables t = s for W II , t = s + k,2 - k2 

for W III . 

For small k,2 - e : GCt - k,2 + k2) "" G(t) -
(k,2 - e)aGlat. This gives 

WI! + WIII ~ J [GU) - (G(t) - ~~ (k,2 - k2») ] 

dt P () -ieG d 
X k'2 _ e _ if t <,0 ~ e ~ 

One gets a well-defined quantity for 

J aGP 
iii t dt, 

and W II + W III decreases rapidly with p. We then 
neglect it, and have the result 

dW Idn., '" F(p)[<,O (0) I /], 

(22) where F(p) is given by formula (24) . 

(25) 

.As <,0 is infinitely differentiable, g is rapidly decreasing 
with P and one has 

Ig(",) I < I/lpln for Ipi > bn and n is arbitrary. 

We take p large enough so that pi > bn and write 

J Fl (.0') (' ) d' f f -'-2- g '" - '" '" = + . 
p le'-el<pl le'-el>pl 

As p goes to + <Xl, the second term goes to zero 
as II/p/n-l. As F(p')1 P'2 is then nearly constant, the 
first one gives in the lowest order in II p (n is taken 
large enough) 

dWI/dn., "" F(p)<,O(O)I l, (23) 

Bo Phenomenological Formula for Two Successive 
Interactions 

We consider now we are dealing with two succes­
sive scatterings and an intermediate real particle 
of mass m and momentum K. We first write its 
current for a given Pl' We call W l (W2 ) and 0'1(0'2) 
the transition probability and cross section of the 
first (second) interaction. 

.As in the calculation of the simple scattering 
transition probability, we calculate the density at 
point y for an interaction at point x and integrate 
over x. The density at point y(yo, y) depends on 
the transition probability in the direction (y - x(, 
the speed of the intermediate particle and the de-
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crease in (x - y)-2 of the current (f jr2 dfl = const). 
This gives 

dj~~~y) = rep, Q)2 _ (ma mb)2]! 

X 1 dx j:(x)j~(x) ~ [du, ] I 2 

P#Q. dp, dflK K~(Y-X)A (x - y) 

X 8[1x - y[ - ([K[IKo) [Yo - xo[]6(yo - xo), (26) 

where 6(yo - xo) means the intermediate particle 
only exists for Yo > Xo. 

One easily verifies that 

1 
dj~nt(y) dy = dW, 

dp, dp, 

by taking the new variable u = y - x. Equation 
(10') gives u, and we may write 

dj~n'(y) _ (211Y 1 .a( ) 'b( ) d 1 
d - 4P Q J# X J, x x ( _ )2 PI # • X Y 

X 8([X - y[ - ~ (Yo - xo») 

X [I E(p,K) [K[2 d [K[ 
2p,02Ko 

X [(PQ[ t [p,KW 8(P + Q - p, - K) l~(Y-x)- (26') 

We now use Eqs. (7) and (8') once more for the 
second interaction 

d~:p) = ~ol U2 1 dj~~:y') j~(?I~, y' - ~) dy'. (27) 

By using the new variable y(y~, y' - ~) and Eq. (10'), 
this gives 

dWC~) = (211")4 1 .n( ) .b( ) 
d I6P Q R K J# X J. X p, # • 0 0 

X (-x + Iy + ~)2 j~(y) 8([-x + y + ~[ 

- C[K[IKo)(Yo - xo» dx dy[1 ~::~IJ20 [K[2 d [K[ 

X [(PQ[ t [p,KW 8(P + Q - p, - K) 

X [E(q,rJ)/2q,02rlO ] 8(K + R - q, - T,) 

X [(KR[ t [q,T,Wdq, dr,l~~(Y_x)_+p' (27') 

In fact, we do not measure anything about K 
and some correlations may exist between the meas-

urements of Plq,rl. We then take E(Plq,rl) instead 
of E(p,K)E(qlr,) and obtain W(~) by integrating 
over Pl' 

We now state the following result whose proof 
is fairly long, but not too difficult: 

[jo(x - (PIPo)Xo, xo)[ < I/[x - vxo[r 

for [x - vXo[ > Ar + xod, 

for any value of r, with v = PIPo and 

[jo(x, 0) [ < I/[x!, for [xl > Ar 

[jo(x, 0) being rapidly decreasing because the wave­
functions 'P are. infinitely differentiable]. 

It is clear that j~(x)j~(x) is rapidly decreasing 
with Ixl and Xo, for IVa - Vb I > 2d. By using the 
same kind of approximation as for .formulas (21) 
and (23), we get 

dW(~) _ ~~ ~ [I E(p,q,r,) 
dfl., - ltiP#Q.RoKo / 2plO2qlO2rl o 

X [K[2 d [K[ [q112 d [qtl deL: PI) 

X 8(L: P - L: PI) 8«P + Q - PI)2 - m2
) 

X [(PQ[ t [p,KW [(KR[ t [q,r,Wl~p 

X 1 j:(x)j~(x)j~(y) dx dy 

X 8(lx - y[ - ([KJIKo)(Yo - xo». 

We have also used 

and 

dK/2Ko = 8(K2 
- m2

) d4K, 

1 8(P + Q - p, - K) d4K = 1, 

dp, = - dK with K = P + Q - Pl' 

Then, one has 

1 j:(x)j~(x) dx dy 8([x - y[ 

- (KIKo)(Yo - xo» x j~(y) ~ 8P#Q.Ro (2!)9 

X 1 'P~(Jl2 'Pa(P) 'PVq.2 'Pb(q) 'P~(r') 'PJr) 
2p~ 2po 2q~ 2qo 2r~ 2ro 

X dp dp' dq dq' dr dr' e-i(p+a-v'-a')z 

(28) 

X ei(r-r')' dx dy 8([X - y[ - ~o (Yo - xo). (29) 



                                                                                                                                    

1582 DANIEL IAGOLNITZER 

We now write 

J i("+.+r-,,'-.'-r'),,, d = e x 

x J ei(r-r'l" ~(Iul - ~ UO) du 

= (211")' o(L p' - L p) 

X J e;~I"le-i(r-r')u du ~I . (29') 

where>.. = ([KI/Ko)(ro - r~) is a second-order 
quantity. We find 

J e;~lule-;au du ~ 0(~)(211")3 

at the limit of small support of test functions ~(~). 
One then gets using (28) and (29) 

dW/dOq, '" F(j3)[~CO)/l]. (30) 

which is exactly formula (25). 

C. Choice between Other Possible Propagators 

Unitarity gives DCk2) - D*(k2) = i~(k2 - mll), i.e. 

DW) = -(1/21I")W - m2 + iE)-l + R(kll
). (31) 

where R is some real function. In particular, one 
may make Olive's choice3

; 

D( 2) C 1 - e 
-211" k = k2 2 + . - k2 2 • -m ZE -m -ZE 

1 P 
= k2 2 + . + 2(e - 1) k2 2 • (32) -m Ze -m 

where e is an arbitrary constant, although the reasons 
for restricting R in this way are not very clear. 

We now show that we need e = 1 in (32) to 
obtain the phenomenological result. Let us note first 
that if we take e = 0, i.e., 

-1 1 
D = 211" e - m2 

- iE • 

the calculation is similar but we have 

-1 1 J T"7r r"7r • ,. 
-=c-"'--:-. = - e( - AIO') O(AI x e')e'· v de' 
~KI - 'le KI 

is place of formula (19). The end of the calculation 
is similar, but instead of the expected F(I3), we get 
F( - 13), i.e., the value of F for the direction opposite 
to the phenomenological one. 

We now use formula (32) and have 
2 

411"2 D(k2)D*(k,2) = (e II + . )(klll II • ) -m Ze -m -'lE 

+ (k2 2 • )(k'2 2 + .) -m -'le -m ZE 

[ 
1 1 

- e(l - e) kll II + . kill II + . -m u -m ZE 

1 1 . ] 
+ kll _ m2 - iE k'll - m2 - if . 

The first term gives c2F(j3)[~(O)/p2]. The second one 
(1 - e)2F(-j3)~(0)//. For the third one, we write 

[ 
1 1 

e(l - e) k2 II + . k'll 2 + . -m 'lE -m 'lE 

1 1 ] + e - m2 
- if k'll - m2 

- if 

= e(l - c) [211"2 oW - m2
) ~(kJ2 - m2

) 

2P p ] + k2 _ mll k'll _ m2 • 

Since 

kll P 2 k'll P 2 + 11"2 0(k2 
- m2

) o(k'l! - m2
) 

- m - m 

the third term is to be neglected for the same reason 
as Wu + Wm in the end of Sec. HID. 

In conclusion, one does not find the phenomeno­
logical result but rather 

[~(O)/ p2J[cllF(j3) + (1 - c)llF( - j3)J. 

IV. CONCLUSION 

We have thus shown that the formula obtained 
in the S-matrix formalism gives the same result as 
the phenomenological one. 

This was shown using the usual correspondence 
between wavefunctions and currents and under the 
following assumptions: the distance between the two 
targets is large compared to the extension in space 
of the wave packets of the particles, which in turn 
is large compared to the Compton wavelength and 
to the impact parameters. Furthermore the measure­
ment apparatus cannot discriminate between the 
momentum components of the wave packets. 

Let us now point out that the only thing we have 
done was to obtain consistent results. Maybe one 
could try to find another propagator, another cor­
respondence between wavefunctions and currents, 
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other "reasonable conditions" and show it is possible 
to describe a double scattering in terms of two 
successive scatterings. It would then also yield con­
sistent results. Although we have no absolute reason 
to say it is hopeless, it does not seem very easy. The 
consistency of our results may be expressed in 
various ways. For instance one may say it proves 
the usual propagator is a good one. But one might 
also admit the existence of the usual pole and say 
it proves that the correspondence between wave­
functions and currents is good. This could be inter­
preted as a definition of space-time and currents in 
S-matrix theory, in an asymptotic sense. 

However, we only studied double scattering. On 
the one hand, to say that the usual propagator is 
good would need to generalize our results to any 
multiple scattering and to any number of initial and 
final particles. The generalization to any multiple 
scattering does not seem difficult. The generalization 
for more than three final particles of the double 
scattering case is easy. Another point is to see what 
are the restrictions on the function R(k2

) of formula 
(31). 

On the other hand, to say that the definition of 
space-time and currents is good would need not 
only the generalizations we have quoted above, but 
also the study of all possible forms of interactions 
(including for instance the propagation of unstable 
particles and such things). One should make a 
correspondence between properties (singularities for 
instance) of the S-matrix and corresponding phe­
nomenological processes, including all possible 
processes. 

It might then yield, and this is the more ambitious 
program one could try to achieve, the possibility 
of a measurement theory in the framework of S­
matrix theory, a measurement being merely a special 
kind of process taking place in space-time. 
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33- and 6j-symbols are studied for a general group without assuming that the group is ambivalent 
or multiplicity-free. The choice of multiplicity label r that distinguishes the equivalent irreducible 
representati~ns tha~ may arise in a Kronecker l?roduct of irreducible representations is left arbitrary 
and no speCIal cholCes of phase are made. It IS found that the 33- and 63-symbols obtained have 
e~senti~lly the same properties as the familiar 33- and 63-symbols for the rotation group in three 
dimenSIOns. 

1. INTRODUCTION 

I N this paper the main features of Racah algebra 
(often called the quantum theory of angular mo­

mentum) are developed for any finite or compact 
group. It can be shownl that there is no essential 
difference between the Racah algebra for Ra, the 
rotation group in three dimensions,2.3 and that for 
any other simply reducible (SR) group. A group G 
is said to be SR if it is both ambivalent and mul­
tiplicity free (mf).4 The statement that G is ambiv­
alent means that every element of the group is 
in the same class as its inverse. The group G is mf 
if in the reduction of the Kronecker product of any 
two irreducible representations of G no irreducible 
constituent appears more than once. Sharp5 has 
relaxed the requirement that G be ambivalent, thus 
obtaining Racah algebra for "quasi SR" groups. 

Hamermesh6 has shown how to obtain the prop­
erties of the Clebsch-Gordan coefficients for Sn, the 
symmetric group on n objects. These groups are 
not mf for n > 4, but they are ambivalent. 

In this paper we remove completely the assump­
tion that G is ambivalent and mUltiplicity free. This 
generalization is interesting physically as well as 
mathematically: for example the group SU(3) which 
is neither ambivalent nor mf has been used in 

* A less general version of this work was submitted by 
one of us (J.-R. D.) in October 1962 in partial fulfillment 
of the requirements for the M. Sc. degree in physics at the 
University of Alberta. 

t Holder of a Studentship from the National Research 
Council of Canada. 

1 E. P. Wigner, "On the Matrices Which Reduce the 
Kronecker Product of Representations of S. R. Groups." 
Privately circulated manuscript, Princeton, 1951; see also 
E. P. Wigner, Group Theory (Academic Press Inc., New 
York,1959). 

2 G. Racah, Phys. Rev. 62, 438 (1942). 
8 U. Fano and G. Racah, Irreducible Tensorial Sets (Aca­

demic Press Inc., New York, 1959). 
4 E. P. Wigner, Am. J. Math. 63, 57 (1941). 
6 W. T. Sharp, "Racah Algebra and the Contraction of 

Groups." Report AECL-1098 (Atomic Energy of Canada 
Ltd., Chalk River, Ontario, 1960). 

8 M. Hamermesh, Group Theory (Addison-Wesley Pub­
lishing Company, Inc., Reading, Massachusetts, 1962). 

nuclear structure7 as well as in the classification of 
elementary particles. 8 

The 3j-symbols are defined, in the usual way, in 
terms of the elements of the unitary matrix which 
reduces the Kronecker product of two irreducible 
representations of the group G into its irreducible 
constituents. However the set of 3j-symbols thus 
defined is not unique so that there remains a certain 
freedom in the choice of 3j-symbols. This freedom 
can be exploited to impose some simple symmetry 
relations among the various 3j-symbols. 

We define the Ij-symbol as a special case of a 
3j-symbol and the 6j-symbol as a sum of products 
of 3j-symbols. These generalized 6j-symbols have the 
familiar properties of symmetry and unitarity, and 
satisfy a Biedenharn identity.a.9 The added com­
plexity of these generalized relations is twofold: there 
are summations over multiplicity indices and the 
"phases" are more complicated. 

We label the equivalence classes of the irreducible 
representations of G by the letter j with appropriate 
subscripts. By jl = j2 we shall mean that jl is equiv­
alent to j2' We denote the representation matrices 
by j(R)m m', where REG and [jl will stand for the 
dimension of the representation space of j. The 
matrices j(R)m"" depend on the choice of basis in 
representation space. For instance jl = j2 does not 
imply that jl(R)m,,,,, , = j2(R)m·m." but only that 
these two sets of matrices are equivalent. If G is 
not ambivalent, G has irreducible representations 
that are neither integer nor half-integer; such j will 
be called complex. The representations will be taken 
in unitary form and we will write {j(R)m m'}* = 
j(R)m m'. We denote by j* the representation which 
is complex conjugate to j. When j ~ j*, i.e., when j 

7 J. P. Elliot, Proc. Roy. Soc. (London) A245 128 (1958)' 
M. Kretzsch~ar, Z. Physik 157, 433 (1960); V. Bargman~ 
and M. Moshmsky, Nucl. Phys. 18, 697 (1960). 

8 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman 
Nucl. Phys. 26, 222 (1961). ' 

~ L. C. Biedenharn, J. Math. and Phys. 31, 287 (1953). 
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is complex, we choose the basis in the representation 
space of j* such that 

i*(Rr m' = {j(Rr m'}* = j(R)m m'. (1.1) 

2. THE 3j-SYMBOL 

We define the 3i-symbol Uli2i3) ' ,m, m,m, by the 
equation 

il (Rr m, ,MRt' m,' 

= :E [i3J I (iIM3)' ,m,m, ... } * 
;. 

x i3(R)m.m., (M2i3)"m"m,m." (2.1) 

where a sum is implied over repeated m and r 
indices (once covariant and once contravariant). If 
a covariant m or r index appears in a complex con­
jugated symbol it is to be considered for purposes 
of summation convention as contravariant and vice 
versa. The index r is a multiplicity index and it 
takes on as many values (e,g., 1, 2, 3, ... ) as the 
multiplicity of i3 * in the Kronecker product il X i2' 
We say that ii, i2, and i3 form a triad if i3* is con­
tained at least once in the product il X i2' The 3i­
symbols thus form a square matrix having as row 
indices (mlm2) and as column indices U3m3r). It 
is sometimes useful to think of the 3i-symbols with 
i's and m's fixed as the components of a vector. 
The multiplicity index serves as a label for these 
components. It follows from Eq. (2.1) that the 3i­
symbols satisfy the unitarity conditions 

[i3] I (iIM3)' , .. ,m,m.} *(iIMa')" ,m,m,m.' 

(2.2) 

and 

:E [j3] {(jd2i3)"m,m,m,} *(iIM3)"m, 'm,'m. 
;. 

= O"'m"om'm." (2.3) 

where the indicated sum is over all irreducible rep­
resentations of G since by convention the 3i-symbol 
is zero whenever id2i3 do not form a triad. 

Clearly the phases of the 3i-symbols are not 
determined by the defining equation. More gen­
erally let 

{(iIM3)"m,m,m,l' = U(123)/'UIM3)r',m,m,m" (2.4) 

where U(123) is a unitary matrix which may be a 
function of ii, i2, and i3 but is independent of ml , 

m2 , and m3 • The transformed set of 3i-symbols 
satisfies the same defining relation as the original 
set. This matrix U may also depend on the order 
in which ii, i2, and i3 appear in the 3i-symbol. For 
instance U(123) and U(132) may be different. Thus 

the 3i-symbols are defined only up to a unitary 
transformation and this freedom can be exploited to 
impose "simple" symmetry properties on the 3i-sym­
boIs. By an appropriate choice of the matrices U 
one might hope for example to make the 3i-symbol 
symmetric or antisymmetric under permutations of 
the j's and of the corresponding m's. However, the 
most convenient choice of the matrices U (i.e., of 
an r labeling scheme) may depend both on the 
group and the specific application envisaged. Hence 
in this paper we shall not make a definite choice 
of these matrices Uj the 3i-symbols are required 
only to satisfy Eq. (2.1) and the theorems proved 
are independent of special choices of basis. They 
apply to any set of 3i-symbols (consistent with the 
defining relation) of any compact or finite group. 

We now wish to see what happens to the 3i­
symbols when the i's and m's are permuted. Using 
the unitarity of the 3i-symbols and of the representa­
tion matrices in Eq. (2.1) one obtains 

~ J il(Rr'm, ,MRt'm, ,i3(R)'"'m. , dR 

= {(id2i3)"m,m,m,I*(M2i3)r.m"m"m", (2.5) 

where A = J dR and the integration or sum is to 
be performed over the group G. It follows that 

:E /CM2i3)r,m,m,m,/2 = :E /(id3i2)"m,m,m,/2 

Hence there is a unitary matrix M such that 

(Mli3)"m,m,m, = MC12, 3)/' Cili2i3)' , ,m,m,m" (2.7) 

and using the unitarity of the 3i-symbols, one obtains 

M(12,3):' = Ci2M3).,m,m,m, {(id2i3)r',m,m,m. 1*· (2.8) 

This matrix M (12, 3) does not depend on ml, m2 , 

or m3 as can be seen from Eq. (2.5). However it 
may depend on the ordered set id2i3 and also on 
what transposition is being considered. The comma 
in M(12, 3) indicates that il and i2 are to be per­
muted. The argument (1, 23) would mean that i2 
and i3 are to be permuted and finally when no 
comma appears, i.e., (123) we mean that il and i3 
are being permuted. Clearly any cyclic permutation 
of the i's in a 3i-symbol can be obtained with a 
product of two matrices M and we need consider 
only transpositions. Given a set of 3i-symbols one 
can obtain a set of matrices M which express a 
certain symmetry of the 3i-symbols under permuta­
tions of the j's and m's. As an example consider a 
simply reducible group. The matrices M are just 
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complex numbers of modulus one and the usual 
choice of phases consists in taking 

M(123) = M(l, 23) = M(12, 3) = (_IY,+i.+i., 

where (-1); is a certain phase factor associated with 
p.6 It does not seem possible to define (-1) i with 
the desired properties in the general case. 

3. THE Ij-SYMBOL 

The 1j-symbol (j)mm' and its complex conjugate 
(j)""" , are defined in the usual way: 

(j)",,,,, = U]l(jOj*)I.",O"" = {(j)"''''' 1*. (3.1) 

The representation 0 is the identity representation 
which is of course one-dimensional so that the cor­
responding m takes on exactly one value denoted 
by o. From the properties of the 3j-symbols it fol­
lows that 

j(R)"" ",.' = (j)"""'·j*(R)m."'·' (j)"" '",.', (3.2) 

(j)"'."'.(j) .... ' .... = ~""m." (3.3) 

raise and lower multiplicity indices. Let 

A(I23)rr' = {A(I23r'l* 

x (j1)""'" (j2)""'" (ja)""'" . (4.1) 

The unitarity of A is easily shown to follow from the 
unitarity of the Ij- and 3j-symbols. The proofs of 
the basic lemma and of the theorems of the next 
section are similar to those given by Sharp6 for 
quasi SR groups. Most of these proofs are straight­
forward but long. For this reason we will give detailed 
proofs only for the lemma and for some of the the­
orems. 

Lemma: { (j1Ma)r. "".,.",.1 * 

= A (I23)rr, (j1)"''''(j2)."n·(ja)'''·'''(j~j~j~)T' ,,,,".n.' 

Proof: Because of the unitarity of the Ij-symbol, 
Eq. (3.2) can be written 

jl (R)'" , ",,' (jl)"" '",' = jl *(R)","" (jl)""'" . 

Also, 

(3.4) Using similar equations for j2 and ja, one obtains 

jl (R)"" "" ,j2(R)",, m. ,ja(R)",' "" ,(jS'" '",' (j2)"" '",' (ja)'''' '",' 

(j*) ..... , = M(jOj*)(j)"""" (3.5) 

where the matrix M(jOj*) is just a phase factor since 
o = 0* appears exactly once in the product j X j. 
From the choice made in Eq. (1.1) and from Eq. 
(3.2) it follows that 

where 

and 

(3i = +1 

-1 

(j)",,,,, = {3j(j)""m, 

if j is integer or complex 

if j is half-integer, 

'Y; = +1 if j=j* 

if j~j*. = M(jOj*) 

(3.6) 

(3.7) 

Note that 'Yi could be chosen to be +1 in all cases 
but in accord with the point of view outlined pre­
viously we shall not make this particular choice. 
We will write A; = (3;'Y; and also }.I(123) = A1A2Aa 
if ;1M3 form a triad. Clearly'Y;o = ('Yj)* and there­
fore A;. = (A;)*. If the group Gis SR, we can take 
Ai = (_1)2; and it follows that all the phase factors 
}.I are +1. 

4. RAISING AND LOWERING OF INDICES 

Before proving the basic lemma of the theory we 
define a unitary matrix A which will be used to 

= . *(R) ",'. *(R) "." *(R) ""(j )"""'(j )"""'(j )"' .... 31 '" 32 '"~ 3a n, 1 2 3 • 

Integrating each side over the group and using Eq. 
(2.5), one obtains 

{ (j .. ) I *(j .. ) IJ213 r,m,,,,.,,.. 13233 r,ff'h, 'm.'m.' 

_ (j )"""'(j )"""'(j )"""'(j * . * . *) - 1 2 3 1 32 33 r' ,"lnan_ 

X {(j *'*'*) J* 1 32 13 r',nl'n."h' • 

It then follows, from the unitarity of the 1j- and 
3j-symbols, that 

{(jlMa)r.m'.., .... J * 

- {(j . .) (j * . * . *) - 13233 r,ml'm,'m.' 1 J2 33 r',1I.l'".'nS' 

X (j )"''''(j )"""'(j' )"""'(j *. *. *) 1 2 3 1 32 3a r' .",,,.,,.' 

This is easily recognized to be the desired result. 

The above lemma makes it useful to define sys­
tematically contravariant (raised) m and r indices 
as in the SR case.1

•
a We use the Ij-symbol to raise 

a single m index according to the definition 

(j .. *) m. _ (. *)""""'(j .. ) IJ2Ja r."",." - Ja IJ2Ja r • ..".,.",,', (4.2) 

and the A matrix to raise a single multiplicity index 
according to 

(j .. )r. _ A(1*2*3*)rr' (j .. ) IJ2J3 """""" - 132Ja r' .""m,m.· (4.3) 
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It follows that 

(4.4) 
and 

(j .. ) - (j .. )r" A(1*2*3*) 11213 "."'1"'."'_ - 11213 m1m.m. r'r· (4.5) 
Our lemma states then that 

{(j ") }* _ (j' .)r.m ..... "'. 132Ja r.m.m.m. - 1321a • (4.6) 

The matrix (j)",,,,. is symmetric when i is integer or 
complex but it is skew-symmetric when i is half­
integer. Similarly the matrix A need not be sym­
metric. It is easy to show that 

A(l *2*3*)r'r = J£(123)* A(123)rr" (4.7) 

If the group is ambivalent and if J£(123) = 1 then 
A (123) is symmetric. 

We shall often drop the m indices and indicate 
the fact that a particular m index is contravariant 
by making the corresponding i boldface. Then our 
summation convention for m is that we must sum 
over all possible values of m when the corresponding 
i occurs twice (once in boldface type and once not). 
The Ii-symbols can be used to raise or lower m's 
in any order. However the matrix A depends on 
three j's (in a certain order) and it raises the r index 
of the 3i-symbol with all m's covariant. If some of 
the m's in the 3i-symbol are contravariant a different 
matrix A must be used to raise the multiplicity index. 
It is easy to see that for each contravariant m the 
corresponding i in the argument of A must be 
replaced by its complex conjugate. Thus we write 

(M2ja)r = Ud2ja)" A(12*3) .. , 

where we use the fact that i** = i. We are now in 
a position to define the 6i-symbol. 

5. THE 6j-SYMBOL 

Our definition of the 6i-symbol is similar to the 
usual one. However the 6i-symbol now depends on 
four mUltiplicity indices, one for each triad. We 
define 

This definition is to be extended to 6i-symbols with 
contravariant multiplicity indices in an obvious way: 
any contravariant multiplicity index on the right 
of Eq. (5.1) must appear contravariantly on the 
6i-symbol. The matrices A can then be used to raise 
and lower multiplicity indices on the 6i-symbols. Our 
first theorem gives an expression for the complex 
conjugated 6i-symbol. 

Theorem 1: 

3t2J1aJ2a { ... }* 
ia4i24i14 r.r.r •• , 

Proof: To obtain the complex conjugate of a partly 
contravariant 3i-symbol the properties of the 1i­
symbol must be used. For instance 

{(j ") """" }* _ {(.)m .... (j)m .... (.*.*.) }* 132Ja r. m. - 1t 2 3t 32 Ja • ,n, ... m. 

For the 6i-symbol one has 

J123ta32a { ... }* 
i34i24i14 r. r.r ... 

= (A12A1aA23Aa4A24A14)*(j34j24j23Y' 

X U34j13i14Y' U12i24j14Y'(j12i13i23)'" 

If one now uses relations of the type 

(j1M3)r(jt'i/ja). = A3(MJ3 *)r(j/ i/ ia *). 

one obtains 

J12113J23 { ... }* ;34;24iI4 Tl TsTar ... 

U *. *. *)r'(j *. *. *)r. = 34 324 123 a4 J13 l14 

X (j12*j24*i14*Y'U12*j13*j23*Y" 

which is the required result. 

In the following theorem we give the symmetry 
properties of the 6j-symbols under permutations of 
the j's that preserve the triads. 

Theorem 2: 

X M(12 13, 23)./'M(12*24, 14*)r.:· M(34 13, 14*),-' .,M(34*24 , 23)'" •• ' 
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(iii) {M(13, 12 23)M(12 13, 23)} r,," 

X {M(24, 12*14*)M(12*24, 14*) }r.,'· {M(13, 34 14*)M(34 13, 14*) r" r, 

X {M(24, 34*23)M(34*24, 23)}'" r" 

where M(1 23)'. = {M(l 2 3):}* and where {M(2, 1 3)M(1 2, 3) }T: = M(2, 1 3)r.'M(1 2, 3):. 

Any other permutation of the j's which preserves the triads can be obtained from the three basic per­
mutations given above. The multiplicity indices on the 6j-symbols can be raised and lowered with the 
unitary matrices A with the appropriate arguments. 

In the quantum theory of angular momentum the 6j-symbols are often thought of as recoupling coeffi­
cients since they arise from the associativity of the Kronecker product. The next theorem shows that the 
general 6j-symbol can also be considered as a recoupling coefficient. 

Theorem 3: 

Proof: Let T be defined by 

(jdJ 3j23),'(j34j24i23)r, = L: [j'4lA24 *(j34j'3j14),'(jl2j24j'4),'Tr, r,r:' . (5.2) 

We wish to show that 

The index m34 can be raised on each side of Eq. (5.2) and after using the unitarity of the 3j-symbols one 
obtains 

If ma is raised, then it follows from the unitarity of the 3j-symbols that 

and by definition this is the 6j-symbol which appears in the statement of the theorem. 

Theorem 4: The 6j-symbols satisfy the unitarity condition 

" [. 1 [. It'J 2i13i23}* r jl2jl3j2s'} £.... JJ4 J23 i 
il" "34j24j14 TIT2 T ,r ... li34j24j14 Tl'r2 T S r ,,' 

except in the trivial cases (i.e., j23* does not appear in jl2 Xi J3 or in j34* X j24) when the left-hand side is zero. 

Proof: The preceding Theorem 3 can be used to expand the expression 

a = (jl2jd23),'(j34 *j2J23),'(j12jl"b') r..(j3/ j24i2s') r,' 

. L: , [il.l [i14'lJL(12 13 23)A24A24 * 
11 .... 11 ... 
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But if one uses the unitarity of the 3i-symbols directly in the expression for a one obtains 

a = (I/[j23])oi .. i .. ,o,/'O","M(I2 1323), 
which completes the proof. 

1589 

The proofs of the following two theorems are long and uninspiring. The procedure is the same as for 
quasi-SR groups5 and will not be given here. 

Theorem 5: (Racah back-coupling rule) 

X M(I3 34, 14*),:"M(12 13, 23) ,,:'M(12*34* ,1),:. 

Theorem 6: (Biedenharn identity) 
1"1' r 

x A2A3(A12,2An')* M(I3*I3', j)".'M(I2*I2', j),,'M(23*23', D.,," 
X M(I2*I3 1 *)''r,,,M(23 , 12*2),:'''M(I3 23*,3),:'" 

X IM(I2'*I3'I*)M(I3'I2'*, I*)}"." 

X IM(2 23'I2'*)M(23'2, 12'*)} .:". 

We now give a generalization of the not very well-known group integral formulas. 

Theorem 7: 

(i) {~I * ~2~'} ,,' = AI*A2(I/ A)2 II xi'(R)Xi(S)Xi'(RS)Xi'(RS-I) dR dS, 

JI JzJ T', 

where xi(R) is the character of R in the representation i, 

( ii) 

(iii) 

(iv) 

{
iI2i13j23} {i12j13i23}* = (1/ A)a If I xi"(R')Xi"(R2)Xi"(R3)xi"(RI-IR3) 

j34j24i14 T1rST.r .. j34j24i14 T'lT2Tar .. 

X xi"(R3-1R2)XiU(RIR2-1) dRl dR2 dRa, 

{
j'jlj2 }'" ,,,' Ij' jd2 1 * ,,,' {i jd2 } 'u 

. . . * I ",. . *f ." . . * J J332 rlar~IS' LJ 1332 r l ,"1"l."rll3' J 33J2 TlIS"Tl:ll"T'S. 

= (l/A)6(A3) I ... I xi(TV-I)Xi'(QS-l)Xi"(UW-l) 

X xi'(QUT)xi'(QWTSUV)xi,(SWV) dQ dS dT dU dV dW 

= (1/ A)4(Aa) 1111 Xi(R)xi'(R')xi"(R")xi'(PR') 

X xi'(R'Rn-Ip2R-l)Xi'(Rn-IPR-I) dR dR' dR" dP, 

~j12j13 * j23}'''''''' ~j12i13 * j23l * "" rj12 i l3j2a} "'l{j12jlai23 }" """] * 

Ua4i24 i\4 UI2i24 j\4J ,,'r,' ta4* i'3il4* r,'"r,' ja4i24i23* r,' 

= (1/ A)8(A23AI2*A14*) I ... I xi"(PIP2)Xi"(PsPaP7-1) 

X Xi"(PI-IP4 -lpaPsPS -1)Xi"(P2 -lP7P6)xi" (PIP7PsPaPa) 
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X X;··(P2P4.-1P&-I)i··(P~6-1P8) dPI dP2 dP3 dP .. dP& dPe dP7 dPs 

= (II A)5(A2aAI2*A14.*) I ... I xfU(R)XfU(R2 -IR1-
1 S) 

X xfU(R-lSRaRl)X;"(R2)X;"(SRR2R3)X;"(Rl) x;"(Ra) dR dS dR I dR2 dRa• 

Proof: As an example we prove the first group integral formula. By definition, 

t'l Mf} ,,' = (jlj2jf)" ........ 'm' (jd2j)r.m. m. m (jl *j2j),' m. 'm.,"'(j/jd)r' .".., ",.m' 
. * .. 
1 J23 ,', 

"\ *( .. 'f)" ...... ' ... '( .. 'f) (.)".",.",(. '*') (. ·*:v .... ' .... "".(·*) = "1 31323' JI323 ,'."..'""",' 32 3132 3 , ........ "'''' 3132 JJ 32 "'." .... ', 

= Al*A2(I/A)2 II x f '(R)x;(S)xf·(RS)MR)"'·''''.j2(S)''' .... •• dR dS, 

where ive use Eq. (3.2). Now since the representation matrices are unitary, 

MR)"'··",.j2(S)"'.''''· = j2(RS-1
)"'.'",., = x;'(RS- 1

), 

and the result follows. 
We have seen how the properties of the 6i-symbols follow from the properties of the 3i-symbols in a 

rather straightforward manner. Similarly there does not seem to be any difficulty in extending the theory 
to the 9i-symbols. The 9i":symbol could be defined by 

[

j1111211a] 

12]j22123 

Ja13a2Ja3 rat 

The reader can verify for example that 

[

'11'12'1a] ,at 

11212212a 

31a323333 ,at 

6. CONCLUSION 

3i-symbols for SU(3) have been studied by many authors10 in connection with elementary-particle and 
nuclear theory and these symbols have been investigated also for some other groupsll that are not mul­
tiplicity free. In each case it is necessary to make some explicit choice of labeling scheme for the mUltiplicity 
iIldex, It is plausible that the most advantageous choice for a given group depends on the specific application 
to be made. The present paper provides a framework in which to compare different choices and to see 
what properties are independent of this arbitrary choice of basis. We have seen that 3i- and 61-symbols 
can indeed be defined generally with essentially all the usual properties. In a subsequent paper we hope 
to discuss what simplifying choices of phase can be made for an arbitrary group. (Can M for example be 
taken in 'diagonal form?) and some interesting special properties of the 3j- and 6j-symbols for particular 
physically interesting groups like SU(3). 

10 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963); J. J. de Swart, Nuovo Cimento 31, 420 (1964); M. Moshinsky, 
Rev. Mod. Phys. 34, 813 (1962); G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963); V. Vanagas and 
A. Jucys, Sh. Litov. Fiz. 2, 199 (1962). 

11 L. C. Biedenharn, Phys. Letters 3,254 (1963); see also G. E. Baird and L. C. Biedenharn, J. Math Phys. 5, 1730 (1964); 
G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Propertie8 oJThe Thirty-Two Point Groups (MIT Press, Cambridge, 
Massachusetts, 1963). ' 
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A time-dependent perturbation theory which is based upon the U-matrix approach is presented 
using the interaction e-al(l + e-P1)-IV(X) with {J real, a complex and {J > Re a > O. Thus the adia­
batic or time-independent approximation (fJ --+ 0) and the sudden approximation ({J --+ (0) can be 
obtained using just one formalism. The usual series for the U matrix is derived and shown to converge 
for a semi infinite range if the interaction is of the form Itl-a, 6 > 1, for large times t. Two interesting 
results are (1) The derivation of the "golden rule" from the discrete-state time-dependent perturbation 
theory presented in most text books of quantum mechanics leads to erroneous physical interpreta­
tions because the energy-level shift is ignored. (2) When considering scattering between states in 
the continuum, it is found that a characteristic feature of time-dependent interactions is a discrete 
momentum spectrum of final states which, in the relativistic case, leads to a mass spectrum. These 
spectra cannot be obtained using the S matrix. 

INTRODUCTION 

I N most books on quantum mechanicsl the "golden rule" is found from first-order perturbation theory 
to be 

w = (27r/1i) I(kl A 10)1 2 o(Ek - Eo - !u.J), (1) 

where w is the rate at which transitions take place from the Eo to the Ek energy state, and A (x) arises from 
a step-function perturbation of the form 

V(x, t) = A (x)e- i 
.. , ; 

V(x, t) = 0; 

t ~ 0, 

t < O. 
(2) 

Difficulties are found to occur when transitions of second, or higher, order are considered because terms 
arise which do not conserve energy (usually these discussions are made with w = 0). The nonconservation 
of energy is blamed upon the sudden turning on of the perturbation and the explanation is made that the 
rapid turn on is an artifice used to simplify the calculation, These terms are usually dropped2

•
8 or subtracted 

out by altering the initial conditions.' 
On the other hand when the "sudden approximation,"S based on a step-function perturbation, such 

as given by Eq. (2) with w = 0, is considered, it is found that the probability for being in an excited state 
is independent of time. Consequently for this approximation for t > 0 the transition probability w is zero. 
It is apparent that a paradox exists between the two different approaches. 

One wonders whether this paradox arises because of improper limiting processes. That this is not the 
case is argued below where it is shown that the "non-energy-conserving" terms are needed to account for 
the shift in energy of the energy levels of the unperturbed system due to the perturbation. When this energy 
shift is accounted for, the transition rate vanishes in agreement with the "sudden approximation." 

To examine this point, time-dependent perturbation theory is reformulated in terms of the U matrix6
, 

The expansion of this matrix in powers of the perturbation is shown to converge absolutely and uniformly 
providing that the perturbation H'(x; t) is bounded and approaches zero faster than IWa

, 0 > 1 for It I ~ co. 

By considering the perturbation to be of the form 

* Work was performed in the Ames Laboratory of the U. S. Atomic Energy Commission, Contribution No. 1444. 
I (a) L. I. Schiff, Quantum Mechanics, (McGraw-Hill Book Comflany, Inc., New York, 1955), 2nd ed., p. 195; 

(b) L. D. Landau and E. W. Lifshitz, Quantum Mechanics (Addison-Wesley Publishing Company, Inc., Reading, Mas­
sachusetts, 1958), p. 140. 

2 Reference 1(11.), p. 202; Ref. l(b), p. 145. 
a W. Heitler, Quantum Theory 0/ Radiation (Oxford University Press, London, 1954), 3rd ed., p. 140. 
4 Reference 3, p. 164. 
5 Reference 1(11.), p. 217. 
IS. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Company, New York, 1961), 

pp. 7, 317, 331, 334, 335. 
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(3) 

with {3 real, a complex, and {3 > Re a > 0, both the "adiabatic" and "sudden" approximations can be in­
vestigated by allowing {3 ---t 0 or {3 ---t <Xl at the conclusion of the calculations so that limiting questions 
are no longer pertinent. 

In addition to the discrete case, scattering from one continuum state to another due to time-dependent 
interactions is also considered. The nth term of the perturbation expansion for the U matrix is obtained 
for the familiar "adiabatic" potential V(x)e- alll

, with a real, which can be considered as a limiting case 
for (3 ---t <Xl of the interaction H'(x, t) + H'(X, -t). Identical results to the usual ones are obtained for the 
S matrix6 in the limit a ---t O. 

In addition, it is found that a characteristic feature of time-dependent interactions is a discrete momentum 
spectrum of final states, which in the relativistic case, can be interpreted as leading to a mass spectrum. 
These spectra cannot be obtained using the S matrix. 

U-Matrix Formalism 

One considers the time-dependent Schrodinger equation 

[Ho(x) + H'(X, t)]lfs(X, t) = ih i)1fs(x, t)/at, (4) 

where H' (x, t) is Hermitian and is to be regarded as a time-dependent perturbation and H 0 is the unperturbed 
Hamiltonian, time-independent, but not necessarily representing a free particle. The perturbation expansion 
is most easily derived by utilizing the interaction or Dirac picture. The relationship between the Schrodinger 
wavefunction lfs(X, t) and the interaction wavefunction lfr(X, t) is the unitary transformation 
exp [(ih)-lHo(x)t], where 

(5) 

The equation for the time development of lfr can be obtained from Eq. (4) by direct substitution. Thus 

where 

Hf(x, t) = exp [-(ih)-lHo(x)t]H'(X, t) exp [(ilitIHo(x)t]. 

A formal solution to Eq. (6) in terms of the U matrix is (6) 

If,(t) = U(t, -to)lf,( -to), 

where 

U(t, -to) = 1 + (ih)-l {,. d~1 Hf(~I) + ... 

+ (ih)-n {,. d~1 f,·. d~2 ... f:.-· d~n H;(~2) ... Hf(~n) + 

Time differentiation of Eq. (9) shows that 

ih[aU(t, -to)/at] = Hf(t)U(t, -to), 

so that lfr(t) as defined by Eqs. (8) and (9) is a solution to Eq. (6). 
The following properties of the U matrix are readily demonstrated6

: 

U\t, -to)U(t, -to) = 1, 

U(t, t') U(t', - to) = U(t, - to), 

U(t, - to) = U- 1
( - to, t) = U\ - to, t), 

U( -to, -to) = 1. 

The series given in Eq. (9) converges if Hflfr( -to) is bounded, that is, provided that 

Hj(x, t) I lfr( - to) ~ IH'(x, t) Ilf,( - to) ~ M lfI( - to), 

(6) 

(7) 

(8) 

(9) 

(10) 

(lla) 

(lIb) 

(11 c) 

(lId) 

(12) 
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where M is finite and independent of t. Thus for the nth term of the series, 

lu(n)Ct, -to)1 ::; /i-nkr Lt. d~l ft'. d~2 ... f:.-' d~n = /i-njl,r(t + torCn!tl. (13) 

The right-hand side of Eq. (13) is the general term of the exponential series. Since this series converges 
absolutely and uniformly for the finite interval t + to, the series for U(t, -to) converges absolutely and uni­
formly in this interval. 

It can also be shown that the series converges for semi-infinite and infinite intervals. For example, for 
t < -tl' where tt is finite but as large as desired, let 

IHi(x, t) 1 ::; N IW·; o > 1, 

where N can be any large but finite function of x, and consider Eq. (9) with to = ro. Then, 

u(n)(t, - ro) = (i/i)-n{i~" d~l f~ d~2 ... f~-' d~n[H;(~,) ... H;(~n)l 

+ Lt, d~1 i~" d~2 f~ d~3 ... f~-' d~n [H;(~I) ... Hj(~n)l 

+ Lt, d~1 ft', d~2 i-rot' d~3 f~ d~4 ... f~-' d~n [H;(~I) ... H;(~n)l + 

+ Lt, d~1 f:, d~2 ... f:,-' d~n-l L~ d~n [H;C~I) ... Hj(~n)l 

+ L" d~, f,', d~2 ... f:,-' d~n [Hj(~,) ... H;(~n)l}. 

(14) 

(15) 

For the finite interval, -tt ::; ~n ::; t, Eq. (12) applies and results are obtained which are similar to those 
of Eq. (13). For the semi-infinite interval one observes that a typical term of Eq. (15) contains the integral 

li-ro" d~1 f~ d~2 ... f~-' d~l [Hj(~,) ... HjC~I)ll 

(17) 

Since the right-hand side of Eq. (17) is the general term of an exponential series, the series for U(t, - ro) con­
verges absolutely and uniformly. A parallel proof can be made for U ( ro , t), and, for the S rna trix, U ( ro, - ro ), 

the proof can be made if for t > - tJ, 

IHj(x, t) 1 ::; L(t2 + tr·; t2 > t,; 0 > 1, (18) 

where L is any large but finite function of x. 

TIME-DEPENDENT PERTURBATION THEORY 

The function Y;I(t) can be expanded in terms of a complete, orthonormal set of eigenfunctions un(x), 

(19) 

where 
H o (x) un(x) = EnunCx). 
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As an initial condition, consider the system to be in the stationary state uo(x) at t = -to so that 

"'I( - to) = uo(x) 

Comparison of Eq. (19) to Eq.(8) shows that 

L: a,,(t)u,,(x) = U(t, - to) .. fI( - to) = U(t, - to)uo(x). 

Therefore, 
ak(t) = (Uk I U(t, -to) IUo) == UkQ(t, -to). 

The isometric condition for U(t, -to), given by Eq. (1180), guarantees that 

L: lak(t) 12 = 1, 
k 

so that the probability for being in the kth state at the time tis 

la.(tW = IUkQ(t, -toW. 

The rate of transition, wet), from the Oth to the kth state is then given by 

wet) = d lak(t) 1
2
/dt = d /UkO(t, - to) 12/dt. 

(20) 

(21) 

(22) 

(23) 

(24) 

The expansion for the matrix element U/oo(t, - to) in powers of the interaction can be directly obtained 
from Eq. (9) as 

U"o(t. -to) = a/o(t) = 0100 + (ih)-l {t. ~l (ukl H~(~l) luo} 

+ (ih)-2 {,. d~l t:. d~2 (ukl Hf(~l) lu,)(u,1 H~(~2) luo} 

+ (ih)-a {t. d~l t:. dE2 t:. dEa (ukl Hf(~l) IUI){uz/ Hf(E2) lu ... )(u ... 1 Hf(~3) luo} + .... (25) 

The repeated indices indicate the summation over discrete states and the integration over the continuous 
states. Substitution for Hf(~,,) from Eq. (7) gives 

UkO(t, -to) = 0100 + (ih)-l {IO dEl (u,,1 H'(El) luo} exp (iwkoEl) 

I, It. + (ih)-2 _I. ~l (Uk I H'(~l) lUi) exp (iwkl~l) -t. dE2 (UII H'(E2) luo} exp (iw1ot2) + ... , (26) 

where 
"'Ion = h-I(E,. - E,,). 

A suitable way to treat transitions between discrete states and scattering between continuous states in 
a parallel manner is to use the Fourier transform 

H'(x, t) = (21r)-t L: dtT g(tT) exp (itTt), 

and to consider only interactions with the initial condition 

lim H'(x, -to) = 0 

in accordance with the conditions established in Eq. (14). If 

lim g(q) = 0, 

(27) 

(28) 

(29) 

then by Jordan's lemma,7 Eq. (27) can be replaced by a contour integration along the real axis, closing 

7 E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cambridge University Press, Cambridge, England, 
1952), 4th ed., p. 115. 
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the contour in the upper or lower half-plane depending upon whether t is greater or less then zero, Thus 

H'(x, t) = (2'lIrt 1 du g(u) exp (iut), t < 0; 
01 (30) 

= (211")-1 1 du g(u) exp (iut), 
o. 

t> 0, 

If it is assumed that g(u) is analytic8 in the neighborhood of the contour, then the condition given in Eq, 
(28) is satisfied since any singularities within the contour lead to terms which damp exponentially for large 
negative values of t, 

With the substitutions defined by Eq, (27) and Eq, (30), all the time integrations in Eq, (26) can be done, 
For example, consider the second-order term 

m~)(t, - ex» = ,l.~ (ih)-2 f,o d~l (Uk I H'(~,) lUI) exp (iwkl~l) 

X t:. d~2 (uII H'(~2) Iuo) exp (iWI0~2) = }o~~ (ih)-2(27r)-' f,. d~l L~: d~2 
X L: dUl (Uk I g(Ul) lUI) exp [i(Ul + Wkl)~d L: dU2 (uII g(U2) Iuo) exp [i(U2 + WIO)~2]' (31) 

Performing the integration over ~2 gives rise to the integral 

I = ,~~~ L: dU2 (uII g(U2) Iuo) t,'. d~2 exp [i(U2 + WIO)~2] 

(32) 

Since the integrand is analytic for U2 = -W,O, U2 can be replaced by u, - iE" where E2 is a small, positive 
displacement, Therefore 

I = lim L'" dU2 (~( I g~2 - i E
2),1,)0) exp [i(U2 + W,O - iE2)~d 

•• -0 -'" ~ U2 W,O - ~E2 

_ 11'm 11'm 1 dU2 (u/l g(U2 - iE2) Iuo) ['( '+)t ] '( + ') exp -~ U2 - tE2 W,O 0' 
•• -0 '.-'" 01 ~ U2 WIO - ~E2 

(33) 

Since the integrand is analytic in the neighborhood of the contour, all singularities inside the contour 
give rise to terms which damp exponentially for large values of to' Therefore, 

I , L'" d (ull g(U2 - i E2) Iuo) ['( , ) ] I = 1m U2 '( + ' ) exp ~ U2 + W,O - tE2 ~l ' 
•• -0 -'" ~ U2 WIO - tE2 

(34) 

The integration over ~l can now be performed, This gives 

U (2) - (' h)-2(2 )-1 I' L'" d < I ( ) I ) I' L'" d (ud g(U2 - i E2) Iuo> kO - - 11" 1m UI Uk g Ul Ul 1m U2 (+ ' ) 
to_co -co f.-O -co (J'2 WlO - ~E2 

since 

The integrand has no singularities at Ul = -U2 + iE2 - WkO' Therefore, replacing Ul by UI - iEI, one 
arrives, in a manner parallel to that used for Eq, (34), at the result 

Ui~) = (_h)-2(211")-1 lim L'" dUl lim L'" dU2 
fl-O -0) 4!!,_O-O) 

(36) 

8 Although this assumption is reasonable for Fourier transforms of physical quantities, it is not necessary since it 
can be shown that for It I ...... "', H'(x, t) ...... t l - I ; a < 1, for singularities on the real axis of the form ",-I, ",-I log 1",1, 1",1-1 and 
1",1-1 log I",', 
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The introduction of El into the integrand of Eq. (35) is not necessary but it permits one to carry out the 
0'1 and 0'2 integrations without regard to order. The general term as inferred from Eq, (36) is 

m~)(t, - co) = (-1t(21r)-ln;L-
n ~~~ L: dO'l ;~~ L: d0'2 '" !~~ L: dO'n exp {it[,nnknJl 

X [<Uk I y(O", - iEl) IU1>(Ull Y(0'2 - i (2) Iu rn> •.. (Uvl Y(O". - iE.) IUo>] (37) 
Inn

kO 
2nOlO ••• nn !t

po 
' 

where 
n 

in nkO = WkO + L: (O'm - if:m). 

m=i 

APPLICATIONS 

The adiabatic and sudden approximations can be treated by one formalism using 

H'(x, t) = V(x)e- at /(1 + e-P
'), with {j real, a complex and (j > real a > O. (38) 

When a is complex it is understood that Ht(x, t) is to be added to Eq. (38) so that the total interaction is 
Hermitian. The Fourier transform of H'(x, t) given by Eq. (38) is 

(
I)! 11' Vex) 

yea) = 211' ~ sin [(lr/{1)(a + iO")], (39) 

The function yeO') has singularities for a + iO' = m{j where m = 0, ±1, ±2, .... Equation (39) can be 
be rewritten as 

( ) _ (-1)"'(2 )-l( '1'1) Vex) 
yO' - 11' lr/tJ sin l(lr/{1)(a + iO' + J3m)] (40) 

Thus, in the neighborhood of the singularities, g(O') has the power series expansion 

m = 0, ±1, ±2, ... (41) 

so that y(O") has only simple poles. 
The first three terms of the U matrix for t > ° are given by Eq. (37) as 

m~>Ct, - co) = OkO; 

X (Uk I y(0"1 - if:l) iUI)(ud y(rJ'2 - i(2) luo> ['( + + . . )t] 
( + + ' . ) (+ . ) exp '/, rJ'1 0"2 WkO - Ul - tE2 ' 

0"1 0"2 WkO - tEl - U2 0"2 WIO - U2 
(42) 

With the substitution of y(O") from Eq. (39) into Eqs. (42), one obtains, using the residue theorem, 

m~)(t, - co) = (ih)-1 VkO{(lr/m ' 1. _ t (-1)'" exp [-(a + J3m -:- iWkO)tJ}; 
sm [(lr/J3)(a - 'tWkO)J ... ~O a + 13m - tWkO 

U (2)( ) ('i.)-ZV V { 11'/13 [~ 1 ~ 1 ] 
kG t, - co = '/,n kilO' [( / )(2 .)] £....t ( • ) + £....t • sm 7r J3 a - '/,WkO m~O a + J3m - '/,Wkl m~1 (a - J3m - '/,W1O) 

_ (lr/m t (-1)'" exp [-(a + {jm - iwkl)tl 
sin [(lr/J3}(a - iWIO)] m~O (a + J3m - iWkl) 

+ t t (_1)"'(_1)" exp [-(2a + J3m + {jn - iWko)t1} 
m~O ,,~O (a + {jn - iW10)(2a + J3m + (jn - iWkO) • 

(43) 
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Sudden Approximation 

To obtain the sudden approximation one takes a = 0 and (3 ex> so that Eq. (38) can be written as 

H'(x, t) = 10 ; t < 0 (44) 
l V(x); t > 0, 

which is a step function at the origin. Note that this is the interaction commonly used in deriving the "golden 
rule" from time-dependent perturbation theory.2 In this derivation one considers H'(x, t) to be independent 
of time except for being turned on at t = o. Setting a = 0 and taking the limit {3 ~ ex> , one obtains from 
Eq. (43) 

{ 
1 'w •• ' 'w.,' } 

U~~)(t, - ex» = (ih)-2Vkl V IO C )C ) + C e)C ) - C e)C ); 2WkO 1Wkl 2WlO 2WkO 2Wl0 2Wkl 
t> 0, (45) 

where Vkl 
obtains 

(Uk \v(x)i Ul). Rewriting Eqs. (45), taking into account the cases where the w's are zero, one 

and for k ~ 0 

U (1) 
kO 

U (2) 
kO 

U (1) 
00 

U (2) 
00 

= (ih)-1 Voot, 

= (ih)-2{(VOO)2(t2/2) + L.: VOl VIO[~ - -C. 1 )2 (1 - e- iW
, •• )]}, 

1"0 2Wl0 2WlO 

In the Schrodinger picture, Eq. (19) is 

""s(x, t) = L.: ak(t)uk(X) exp (-ih- 1E k t) = L.: Uk(X)UkO(t, - ex» exp (-ih- 1E.t). 
k k 

(46) 

(47) 

(48) 

Substituting for the first three terms of UkO(t, - ex», using Eqs. (46) and (47), gives through second order 

) 
. -1 )( 1 '" VOl V IO ) ""s(x, t = Vo(x) exp (-2h Wot 1 - 2 t:'o (Eo _ El)2 

'" ) (. -IW ){ V kO V.k V.O + '" V kl VIO }. + £.J Vk(X exp -2h kt E _ E - (E _ E )2 £.J (E E )(E E)' 
.,,0 k 0 k 0 I"" - 0 • - I 

t> 0, (49) 

where 

VO(x) = uo(x) + 

(50a) 

(50b) 

V '" VOl V 10 

Wo = Eo + 00 + £.J E' _ E ' 
1,.0 0 I 

(50 c) 

and 
(5Od) 
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These results are precisely what one expects from the Itsudden" approximation (5). Here the functions 
Vk(X) are solutions of the stationary-state problem 

(51) 

Since Vex) is presumed small Vk(X) can be expressed in terms of Uk(X) using stationary state perturbation 
theory9. This procedure gives Eq. (50). The coefficients of Vk(X) expressed in Eq. (49) are given 
by (Vk(X) I uo(x». These are the same as those obtained from the "sudden" approximationS when the 
initial condition a" = 0,,0 is used. 

As a result of Eqs. (49) and (50), it is seen that the states Vk(X) are populated according to a time-in­
dependent distribution for t > O. Thus all transitions from the state uo(x) to the states Vk(X) have taken 
place at the time t = O. The transition rate vanishes for t > O. 

If one calculates the probability for a transition from the state uo(x) to the state Uk(X) ignoring the fact 
that the physical states are given by Vk(X) for t > 0, a non-vanishing transition probability wet) is obtained. 
For this case the transition probability is given by Eq. (24). Considering only the first order term UkO (1) 

given in Eq. (47) one obtains 

wet) _ IVkOl2 ~(sin (wkot/2)J2 _ 21f IVkOl2 
sin Wkot. (52) 

- h2 dt (wko/2) 2 
- h2 1rWkO 

For t large compared to (WkO)-\ (1rWkO)-l sin WkOt is replaced by the delta function O(WkO)' Hence one obtains 
the "golden rule" 

(53) 

It is therefore seen that this derivation of the "golden rule" is not physically meaningful since the states 
Uk(X) do not exist for t > O. 

Adiabatic Approximation 

For the adiabatic approximation one takes the limit as (3 approaches zero and sets a = 0 SO that Eq. 
(38) can be written as 

H'(x, t) = V(x)/(1 + e-P'). 

Thus one obtains from Eq. (43) 

U~~)(t, - <Xl) = (ih)-l Voo{t - t (-1)'" e:pm
,}, 

... -1 pm 

= (ih)-1 Voo {t + (1/{3) log (1 + e-P')}, (54a) 

( 'h)-1 V I' de = t 00 _P~ i 
-<XI 1 + e 

U~~)(t, - co) = (ih)-~(V()0)2{f. - t f (-I)"'e-,8",· + f f (_I)"(_I)me-,8C",+")'} 
2 .... 1 {3m ... -1 ,,-1 {3n({3m + (3n) 

+ (ih)-2 L VOl VIO{~ + f 1)2 - f ({3 ~. )2 
1"'0 twlO \WIO ",-1 m twlO 

1 to (-l)"'e-,8",1 '" (-I)"e-,8,,· "'., (_l)"'+"e-p<m+n)l} 
- iw'O ];1 {3m + ~ ({3n)({3n - iw lO) + f.; ~ (3(m + n)({3n - iwlO) • 

(54b) 

The sums appearing in Eq. (54b) can be done, giving 

U~~)(t. - co) = (ih)-2(Voo)2{~ + ~ log (1 + e-,8,) + 2~2 log2 (1 + e-/l I
)} 

+ (ih)-2 L VOl VIO{~ + ~ log (1 + e-/l') 
1"'0 tWIO tWIOP 

1 1 1 [( e-
P')2 2e-fJ' 

]} 
- iWIO{3 (1 + e-P1) + 2(WIO)2 1 + e-/l· - 1 + e-/l. + 1 

• Reference l(a), p. 151. 
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(54e) 

For k ;zi! 0, 

U
U) __ (.",)-1 V.kll e, .. ··1 
.. o-~ft. , 

Wit) 1 + e-1l1 (55a) 

V V • .. ··' U!~) ;,.. -(ih)-2 E.....!L..!Q _e.:.......... __ 
1 .. 0 "'kO"'IO (1 + e-II ')2 

+ (i~r2 ViI) VOO e''''ht t d~ + (ili)-2 VkO Vooe''''hl (1 + e-1l1 lilt dy _ ) (55b) 
Z"'kO (1 + e- IIt) L .. (1 + e- II<) ("'kOY

ol 
(1 + e-Il')2 _GO 1 + e " • 

Substitution into Eq. (48) for UkO(t, - co) from Eqs. (54) and (55) gives through second order 

""s(x, t) = x(x, t) exp (-~ {Eat + E .. d~ [W(~) - EoJ}) (56) 

where 

x(x, t) = [1 - ! E /V1O(t) 12 2JUO + E Uk Vko(l) 
1 .. 0 (Eo - E I) ... 0 Eo - Ek 

+ E {E Vil(t) V10(t) _ VkO(t) Voo(t) + 1 aVkO(t) l' d~ V (~)} 
i .. O Uk 1 .. 0 (Eo - Ek)(Eo - E l ) (Eo - ES' (Eo - Ek)2 at _., 00 • 

(57a) 

W(O = Eo + VOO(~) + E I VOI{~) 1% t 

1 .. 0 Eo - El 
(57b) 

and 
Vk/(t) = V.u (1 + e-III)-I, (57 c) 

av;~(t) E .. d~ voo(~) = - VkO(t)VOo(t)e-/l1 f~ dy (1 + e-~rl. (57d) 

In the limit as fJ approaches zero, the integral in the exponent of Eq. (56) becomes infinite. It is clear that 
this infinity must always occur as a phase factor for all 'orders of the perturbation expansion since it was 
shown, even for arbitrarily small but finite fJ, that the series for the U matrix converges and that Utu = 1. 

Except for the term involving (aV kO(t)/at) in Eq. (57a), which approaches zero exponentially [see Eq. 
(57d}J for large fJt, the results expressed by Eqs. (56) and (57) are identical to the results obtained with 
stationary-state perturbation theory.9 If fJt is not large the form of !/IsCx, t) differs in second order from the 
stationary-state result. 

Equations (56) and (57) apply equally well for an arbitrary potential of the form Vet) = V/(X, jJt), which 
approaches zero for large negative times and where fJ is less than any of the natural frequencies of the system, 
with the exception, as shown below, of the second term of Eq. (57a) which arises from the third term of 
Eq. (54c). This can be shown by considering, as an example, the derivation of the m~) term directly from 
Eq. (26) replacing H'(t) by VI(X, I3t). One has 

where 
{kl V'(x, fJt) Il) = Vil(fJt) = V11(t). 

The substitution fJ~z "'" U + fJ~l allows U~~) to be written as 

U~~) = (iJi)-2(1/fJ) L", d~l V~I(fJ~l) J:<o du exp (iwIOfJ-1U)V:O(u + fJ~l)' 
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If l ;;e 0, the integration path for the U integration can be rotated into the upper half complex u-plane, 
encircling poles and indenting around branch points where necessary, until it lies along the imaginary 
axis. Since these singularities lie in the upper half of the complex u-plane, they will contribute terms which 
damp exponentially for large (WIO/{3). Thus the 1+ integral is converted to a Laplace integral. An asymptotic 
approximation can be obtained for large (WIO/{3) (small (3) by expanding Vfo(u + (3~I) about u = 0 and 
integrating term by term. If two orders are kept, one has, to order (3, 

U~~) = (in)-2{~ t d~l V&I({3~l) V:O({3~I) + f (3)Z t d~l V~I({3~l) a~~p~~l) + O({3)}, l ;;e O. ~WIO J_", ,WIO J_", 1 

Provided the time dependence of V~l is the same as Vio ,which is the case for all potentials of the form 
V(x)f({3t), the last term can be integrated giving the result 

Uci~) = (in)-2{~ r' d~1 VO/(~I) VIO(~I) + 2! (. 1 )2 VOI(t) VIO(t) + O({3)}, 1 ;;e 0, 
1W/o J_", W/O 

in agreement with the second and third terms of Eq. (54c). All others terms leading to Eqs. (56) and (57) 
can be calculated in a similar fashion. 

1TrurunentPe~bation 

For the transient perturbation one assumes that H' (x, ± <Xl) is zero. Thus the probability for finding 
the system in the kth state is determined by the S-matrix U( <Xl, - <Xl) for which the nth term is from Eq. 
(37) 

m~)( <Xl, - <Xl) = lim m~). (58) 
,~'" 

If one closes the contour integration for (Tl in the upper half complex plane and assumes that g«Tt - if I) 

has no singularities on the real axis, only the pole due to l"OkO contributes. Contributions from the sin­
gularities in the upper half complex plane have positive imaginary parts which give rise to an exponential 
damping factor which goes to zero as t approaches infinity. 

Thus one obtains 

m~)( <Xl, - <Xl) = (-1)"(2,IV-nI2ih-"lim J d(1'2 ••• 
f:-O 

X }. J d (ukl g(Wlk - 2"0/0) IUl)(ud g«(1'2 - i€z) lu",) ... (Up I g«(1'n - iEn) IUo). 
1m Un 2n nn 

•• -0 Ow ... Qpo 
(59) 

(60) 

If one assumes that Eo > Ek , the above equation corresponds, in first order, to the emission of a quantum 
of energy WOk' The second-order term for (T2 > 0 corresponds to the emission of a quantum of energy (T2, 

leaving the system in the intermediate state Ul, followed by emission (WOk - IJ'2 > 0) or absorption (WOk -

(T2 < 0) of a quantum leaving the system in the final state Uk' 

For this case the number of transitions per unit time is 

w = N lak( CX) W, 
where N is the number of transients per unit time. 

Continuous Case 

(61) 

The continuous case differs from those previously discussed in that the asymptotic scattering boundary 
condition must be imposed on the wavefunction. That is, in the SchrOdinger picture, one must have (for 
scalar wavefunctions) 

(62) 
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where Po, Eo, and p, E are, respectively, the momentum and energy of the incident plane wave and out­
going spherical wave. Note that the polar angle 8 is defined by 

Po'P = cos 8, (63) 

and the azimuthal angle rp is measured in the plane perpendicular to Po. It has also been assumed for sim­
plicity that the scattering center is fixed and the scattering takes place in the vicinity of x = O. The scat­
tering cross section per unit solid angle is related to the amplitude f(8, rp) simply bylO 

(64) 

where v and Vo are the velocities of the outgoing and incident waves. 
Since only the continuum states are being discussed, the simplest way to impose the asymptotic condi­

tion given in Eq. (62) is to choose 

(65) 

so that Eq. (48) becomes 

"'s(x, t) = (2'lrh)-! J dq exp lih-1[q·x - E(q)tll U.I>,(t, - co) = (2'lrh)-I exp [ih-1(po'x - Eot)] 

+ (2'lrh)-! J dq J dy exp lih-I[q·(x - y) - EtJl [UU, - co) - 1] exp (ih-1po·Y)· (66) 

The integration over the momentum directions can be done by choosing 

q·(x - y) = q Ix - yl cos 8'. (67) 

Thus, Eq. (66) becomes 

"'s(x, t) = (2'lrh)-1 exp [ih-\po'x - Eot)] 

- i(2'1rh)-! i: q dq J dy exp (ih-I[rxl~ ~IYI - EtD [U(I, - co) - 1] exp (ih-1po'Y)' (68) 

If one assumes that V(y) falls off with sufficient rapidity so that negligible error is made by integrating 
over some finite region rather than over all space, then in the usual way 

lim "'s(x, t) = (2'lrh)-1 exp [ih-l(po'X - Eot)] - i(2'1rhr t Ixl-1 Ie, (69) 
lxi-CD 

where 

[e = i: q dq exp [ih-1(q Ixl - Et)l(u.1 U(t, - co) - 1 lup .) (70) 

and 
(71) 

The above integral cannot contain incoming spherical waves, since if it did, these waves would also be 
present at t = - co for large Ixl. One sees from Eq. (69) that this would imply that U( - co, - co) ¢' 1, 
contrary to the definition for U(t, -to) given in Eq. (8). It follows, therefore, that no contributions to the 
integral [e can come from singUlarities that may lie in the left-hand complex q-plane; that is, from sin­
gularities with Re q < O. Thus the definition of U(t, -to) coupled with the proper choice of basis eigen­
functions fixes the asymptotic boundary conditions. 

It is simpler at this juncture to restrict the discussion to the nonrelativistic limit in which case E = 
l/2m. The integral [e can be evaluated asymptotically for large t considering Ixl/t, the position of the de­
tectors divided by the time of observation, to be finite. Thus, consider the contour shown in Fig. 1. The 
contributions from the contours C1 and Ca at Iql = co are zero because of exponential damping. The contour 
C 2, which is the straight line 

qr = -qa + iq', (72) 

10 Reference l(a), pp. 100-102. 
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where 

C. L. HAMMER AND T. A. WEBER 

q' = m lxllt, 

q = qR + iqr, 
(73) 

is uniquely determined by the requirement that the integral 10 • be a Laplace transform so that it can be 
evaluated asymptotically using the Laplace method without further distortion of the contour. The integral 
along O2 is shown in the Appendix to be of order Ixl-t and therefore does not contribute to the scattered 
wave. Thus, by the residue theorem 

(74) 
" 

This procedure is easily generalized to include branch points. These are not discussed here since the func­
tions given by Eqs. (43) have only simple poles. Examination of Eqs. (69) and (74) shows that from each 
pole one obtains a scattered outgoing spherical wave of momentum qR of the form 

where 

(76) 

and 

is the location of the pole. 
The quantity t' can be rewritten in terms of q' as 

Wit) = 1 - (q'lqR)' (77) 

For the poles within the contour hi the lower half-plane qR > q', qI < 0 and t' > 0, whereas for the poles 
within the contour in the upper half-plane, qR < q/, qI > 0 and t' < O. Therefore, for both cases tlie scat­
tered waves damp exponentially to zero unless t' remains finite as Ixl and t become large. Th.e time t' is 
to be interpreted as the retarded time, or the time at which the scattering occurred, since then qR is the 
physical momentum, 

p = qR = m Ixi/Ct - t'), (78) 

defined from Eqs. (62) and (76). Since, in general, each pole has a different qR, a discrete momentum spec­
trum is obtained for the scattered wave. Only those poles that are within the contour can give rise to seat­
tered Waves that can be observed for a given Ixl and t. Those poles outside the contour in the upper half­
plane have been scattered at times t' < 0 with momentum p so large that at the time t they have passed 
the point of observation, whereas those poles in the lower half-plane not included in the contour· have 
been scattered at times t' > 0 but with insufficient momentum to reach the point of observation at the 
time t. 

Note from Eq. (77) that for t = 00, if a scattered wave is to exist, q' must equal qR' In this case at most 
only one pole can contribute to the scattering since for poles such that qR = Eq' E ;;e 1, Eq.· (77) becomes 

t' = (1 - E)t. (79) 

Thus It'l = ro for t == ro and the outgoing waves damp exponentially to zero. To obtain the complete 
momentum spectrum, t must therefore be taken large but not infinite. Since the S matrix is U(t, -(0) 
evaluated at t = ro, it is clear that a formalism based upon the S matrix alone cannot take account of 
such a momentum spectrum. 

As a particular example, Eq. (69) can be evaluated by substituting for U(t, - (0), the first-order term 
from Eqs. (43). This gives rise to the integral 
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_ 1'" . -1 {(7r/f3)(-I)' exp [-ih-1(q2 t/2m)](2mih)-1 
Ie - 2m _'" q dq V.po exp (th q Ix!) sin [(-i7r/2mf3h)(q2 - 2mEo + 2mih(a+ f3l)] 

_ '£ (-1)" exp {-ih-1[Eo - ih(a + f3n)]t}}. (80) 
n-O q2 - 2mEo + 2mih(a + f3n) , 

where l is any integer. 

COMPLEX q-PLANE 

X 

x 

FIG. 1. Contour integration for 1/t(x, t). 

The first terms can be evaluated using the contour shown in Fig. 1 and the second term can be evaluated 
by completing the contour in the upper half-plane alone. Contributions from the second term therefore 
come from the poles 

(81) 

which are in the second quadrant. This contribution is precisely canceled, as expected, by the contribution 
from the poles of the first term which are in the second quadrant, 

1 = 0,1,2, .... (82) 

The evaluation of Ie can thus be made by watching only those poles of the first term which lie in the first 
and fourth quadrant. These are 

q'L = (2m)![Eo - ih(f31 + a)]', 

q,u = (2m) ![Eo + ih(f31 - a)]f, 

1 = 0, 1,2, ... , 

1 = 1,2, ... . 
(83) 

It should be noted that the magnitude of the phase for the lth pole is always less than 45°. The result for 
all q' such that all the poles in the fourth quadrant are included within the contour is 

'" 
Ie = -27rim L V.po(-I)' exp lih-1[qR Ixl - (qi/2m)t]) 

,-0 
X exp {-(f31 + a)[t - (m Ixl/qR)]} exp [ih-1(qU2m)t»). (84) 

where 
qR = (m)!{[E~ + h2(f31 + a)2]! + Eo}l, (85) 
qr = -(m)!{[E~ + h2(f31 + a)2]1 - Eo)!. 

It has been assumed here that a is real. For a complex, the above equations apply if a is replaced by Re a 
and Eo is replaced by Eo + h 1m a. 

It should be noted here that energy is not conserved. If a is real then (qi - qD/(2m) = Eo, the incident 
energy. However the outgoing velocity and momentum are interpreted from Eqs. (78) and (84) to be qR/m 
and qR respectively. Thus the final energy is given by q~/2m. This nonconservation of energy is due to 
the fact that in the nonrelativistic case, the mass is not allowed to change. 

For the relativistic case E(q) = (q2c2 + m2c4)l where m is the mass of the incident particle. Here there 
are branch points at ±im which make the contour of integration more complicated. However, it is easy 
to see, that in the relativistic case the poles will give rise to terms of the form 
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Hence qR is interpreted to be the final momentum and c2qRIEo the final velocity so that Eo must also be 
the final energy. Thus energy is conserved and one obtains 

(q~c2 + m2c4)i = (q;'c2 + M 2c4)!, 

where M is the mass of the final particle. Hence, conservation of energy in the relativistic case implies that 
the mass M of the final particle is different from the mass m of the initial particle. It is therefore apparent 
that because of the discrete momentum spectrum a discrete mass spectrum will be obtained in the relativistic 
case. 

Regardless of the form of the potential (including time independent potentials) that is used to calculate 
U(t, - co), a mass spectrum can be obtained in a manner similar to the above procedure if the potential 
gives rise to singularities that produce a momentum spectrum. This point is investigated in greater detail 
by the authorsll in conjunction with the baryon mass spectrum. 

In the following only the nonrelativistic case, for the potential given in Eq. (3), will be discussed. Two 
limiting cases are of interest. These are: 

1. The limit {3 --t co, Re a --t 0. Because Eq. (84) is derived only for t' > 0, this limit gives identical 
results to the "adiabatic" potential e- alll used in the adiabatic hypothesis.8 In addition it is equivalent 
to the step function used by Heitler.3 

2. The limit {3, Re a --t 0. This is the adiabatic hypothesis using, instead of the "adiabatic" potential, 
the function given in Eq. (38). 

The result of the above limiting processes for complex a are 

for 

where, 

and 

for 

Ie --t -2rim exp {ih-1[P Ixl - (p2/2m)t]) V"". exp [-(Re a)t'] 

i' > 0, Re a --t 0, {3 --t co , 

p» h Re a, 

Ie --t -2rim exp {ih-1[P Ixl - (p2/2m)t]) V"". exp [-(Re a)t'] , 
1 + exp (-{3t') 

t' > 0, Re a --t 0, {3 --t 0, 

where, for both equations, 

p = [2m(Eo + n 1m a)]l. 

It is assumed, in the derivation of Eq. (87), that 
n 

L: (_l)le-PI '" (1 + e-P1)-1, 
/-0 

and 

p» n({3n + a), 
where n is some large positive integer. 

(86) 

(87) 

(88) 

If 1m a = 0, the scattering is elastic and results from the value of the potential at the time t' of scattering. 
If 1m a = ±w, an absorption or emission of a quantum of energy nw occurs. 

In the limit {3 --t co with q' > Re [(2m)(Eo - ilia)]!, (t' < 0), the pole for q = [(2m)(Eo - ina)]l is 
not included within the contour and all other contributions damp exponentially to zero giving, for any a, 

lim Is = 0, i' < 0. (89) 

Thus no scattering occurs, as expected, since in this limit the interaction is zero for t' < 0. 

11 C. L. Hammer and T. A. Weber, Nuovo Cimento 37, 88 (1965). 
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If instead of Eq. (66), the time dependence 

exp (Re at)/(l + l') + exp (- Re at)/(1 + e-Pt) , (90) 

is assumed, then the "adiabatic" potential is obtained in the limit {3 ---j. 00. This gives rise to an additional 
pole in the upper half-plane at q = [(2m)(Eo + iha)]l. Since 

Re [Eo + iha]t = Re [Eo - iha]t, 

a result for t' < 0 identical to Eq. (86) is obtained, except that a is replaced by -a, giving for any t', in 
the limit {3 ---j. 00 and real a ---j. 0, 

IC-7 -211im exp {ih- 1 [P lxl- (p2/2m)tJlV"". exp(-Rea It'/). (91) 

SimiIarily, if in the limit {3 -7 0, q' > Re {(2m)[Eo + ih({3n - a)]}i, then essentially only the poles in 
the first quadrant are included in the contour giving for t' < 0 the same result as Eq. (87). 

Comparison of Eqs. (62), (64), (69), (86), (87), and (91) gives the first-order cross section for any of the 
limiting cases 

dl1 (0, ip) = : ~7r 7:7r~)~ l(u;1 H'(x, t') lu;.W, 

where 

u~ = exp (ih -'q ox) 

are plane waves normalized to a unit volume. Since the density of states for these plane waves is 

peE) = mp dn/(27rh)3, 

one sees that the transition probability for the outgoing wave is 

w = (27r/h)p(E) l(u~1 H'(x, t') lu~'>12 

as given by the "golden rule." 

(92) 

(93) 

(94) 

(9.5) 

The general term of the U matrix can be easily obtained for the case of the "adiabatic" potential ({3 -7 (0). 
The result of Eq. (43) with the appropriate substitutions gives the III integration in the general term given 
in Eq. (37) as 

U~::(t, - (0) = (-1y(27r)-nI2h-· ~!~ L: dl1z !!~ L: dl13 

... X 1'" d [101 (uzJ g(U2 - if2) lum> ... (up I g(Un - if.) lu".)] 
Un 2no ann nno ' 

- ¢:l ~'l P-o lllimpo " • " 1llippo 

(96) 

where 

I - '(2 )tv { (7r/{3) _ . ~ (_l)m exp IWnn.". + i(a + {3m)]t}} (97) 
.1 - 'l 7r .1 ' [( • /R)(' + 2. 0 )] 'l L.J 2no + 'f + R) , SIn -'t7r p za •• oPo m-O Uo". 'l,a mp 

Just as for the first-order result of Eq. (80) the contributions from the poles of the second term of Eq. 
(97) must precisely cancel the contributions from the poles in the second quadrant of the first term. Thus 
Eq, (97) becomes 

I - '(2 )hr (7r/{3) 
ol - 't 7r ~ 01 sin [(-i7r/{3)(ia + 2n no".)] , 

where only poles in the fourth quadrant of the final q integration are to be considered. 
For {3 large this becomes 

1.1 

The (12 integration involves the terms 

I - I' 1'" d I (u! I g(U2 - if.) lum>, 
om - 1m 112.l 20n 

ft:-O _eo Il.lilpo 

(98) 

(99) 

(100) 
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This integral can be evaluated by closing the contour in the lower half-plane so that 

I«m = 271iVai VI.. . [( _. /(Jt~~) + ana )] {£ [WI« - i(a + {Jm)r
l 

- £ [3n
OI", + i(a - {Jm)r

l
}. (101) 

SIn 1,11" ta a", ... -0 .. -I 

For large (J, 
(102) 

Since only one of the denominators of Eq. (102) contains Us, the Us integration becomes identical to the 
U2 integration if appropriate substitutions are made. This process can be repeated for all the u integrations 
giving, for any a, 

u<n)(t _ ) = h-nVal VI ... ... V""' (103) 
a"" CD (Wal + ia)(wa ... + i2a) ... (wa", + ina) , 

where only the poles in the fourth quadrant of the final q integration are to be considered. In the limit 
t ~ CD, the q integration will vanish unless qa = q' [see Eq. (79)]. Since E I , E"" etc., are integration vari­
ables, their values can be fixed so that the poles associated with them do not contribute. This leaves only 
the pole at E. = E". - ina. For this pole qa becomes Po in the limit a ~ O. Consequently choosing q' = po 
for small a gives for the nth term of Ie, in the limit t ~ CD, 

I(n) = -2 ·h-n exp [i(po Ixl - Eot)] V",. V .... ... V r" V""' 
t':", 1I"t [w",. + ia][w",m + 2ia] ... [w",r + i(n - l)a] 

(104) 

As a result, the nth term of an S matrix, 

sen) = -271ih"-lfJ(E
a 

_ Eo) . V., V,,,: ... V r" V 1>P, • , 

[Waf + ta][wa ... + 2ta] ... [war + ten - l)a] 
(105) 

can be constructed in agreement with Eq. (167a) of Schweber.6 
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APPENDIX 

The integration along the contour C2 can be done using a method of asymptotic expansion for Fourier 
type integrals that has recently been published.12 The integral to be evaluated is, from Eq. (70), 

«Je" -r /4-

Ie. = i.-'r/' qdq exp {ih-I[q Ixl - (q2/2m)tJ) (ual U(t, -CD) - 1Iu",). (106) 

By making the substitutions 

qr = -qR + q' = -(hm~)l 

where q = qR + iqr, this integral can be put in the form of the Laplace transform 

Ie, = !(l - i)hm exp [ih- 1(q,2/2m)t] f+ [(1 - i + q'(hm~rl] exp (-~t) (ual U(t, - CD) - 1 lu",} d~, 
(107) 

where the phase of ~ is zero at the end of the contour. To obtain the asymptotic expansion, the integrand 
is expanded about ~ = o. The first term in this expansion is 

(108) 

The Laplace transform is easily evaluated and is of order Cl. Since t is related to Ixl through Eq. (73), 
I e. is of order Ixr1 and therefore does not contribute to the scattering cross section. 

12 T. A. Weber, D. M. Fradkin, and C. L. Hammer, Ann. Phys. (N. Y.) 27, 362 (1964). 
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